P值即为拒绝域的面积或概率。
P值的计算公式是
=2[1-Φ(z0)] 当被测假设H1为 p不等于p0时;
=1-Φ(z0) 当被测假设H1为 p大于p0时;
=Φ(z0) 当被测假设H1为 p小于p0时;
总之,P值越小,表明结果越显著。但是检验的结果究竟是“显著的”、“中度显著的”还是“高度显著的”需要我们自己根据P值的大小和实际问题来解决。
扩展资料:
用Z表示检验的统计量,ZC表示根据样本数据计算得到的检验统计量值。
1、左侧检验
P值是当 时,检验统计量小于或等于根据实际观测样本数据计算得到的检验统计量值的概率,即p值
2、右侧检验
P值是当μ=μ0时,检验统计量大于或等于根据实际观测样本数据计算得到的检验统计量值的概率,即p值
3、双侧检验
P值是当μ=μ0时,检验统计量大于或等于根据实际观测样本数据计算得到的检验统计量值的概率,即p值
p值是指在一个概率模型中,统计摘要(如两组样本均值差)与实际观测数据相同,或甚至更大这一事件发生的概率。换言之,是检验假设零假设成立或表现更严重的可能性。
p值若与选定显著性水平(0.05或0.01)相比更小,则零假设会被否定而不可接受。然而这并不直接表明原假设正确。p值是一个服从正态分布的随机变量,在实际使用中因样本等各种因素存在不确定性。产生的结果可能会带来争议。
参考资料:百度百科—P值
P值的计算:一般地,用X 表示检验的统计量,当H0为真时,可由样本数据计算出该统计量的值C,根据检验统计量X的具体分布,可求出P值。具体地说:
左侧检验的P值为检验统计量X 小于样本统计值C 的概率,即:P = P{ X <C}
右侧检验的P值为检验统计量X 大于样本统计值C 的概率:P = P{ X >C}
双侧检验的P值为检验统计量X 落在样本统计值C 为端点的尾部区域内的概率的2 倍:P = 2P{ X >C} (当C位于分布曲线的右端时) 或P = 2P{ X<C} (当C 位于分布曲线的左端时) 。若X 服从正态分布和t分布,其分布曲线是关于纵轴对称的,故其P 值可表示为P = P{| X| >C} 。
p值的计算公式:
=2[1-φ(z0)]
当被测假设h1为
p不等于p0时;
=1-φ(z0)
当被测假设h1为
p大于p0时;
=φ(z0)
当被测假设h1为
p小于p0时;
其中,φ(z0)要查表得到。
z0=(x-n*p0)/(根号下(np0(1-p0)))
最后,当p值小于某个显著参数的时候我们就可以否定假设。反之,则不能否定假设。
注意,这里p0是那个缺少的假设满意度,而不是要求的p值。
没有p0就形不成假设检验,也就不存在p值
统计学上规定的p值意义:
p值
碰巧的概率
对无效假设
统计意义
p>0.05
碰巧出现的可能性大于5%
不能否定无效假设两组差别无显著意义
p<0.05
碰巧出现的可能性小于5%
可以否定无效假设
两组差别有显著意义
p
<0.01
碰巧出现的可能性小于1%
可以否定无效假设
两者差别有非常显著意义
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)