SEM
是scanning electron microscope的缩写,指扫描电子显微镜是一种常用的材料分析手段。
扫描电子显微镜于20世纪60年代问世,用来观察标本的表面结构。其工作原理是用一束极细的电子束扫描样品,在样品表面激发出次级电子,次级电子的多少与电子束入射角有关,也就是说与样品的表面结构有关,次级电子由探测体收集,并在那里被闪烁器转变为光信号,再经光电倍增管和放大器转变为电信号来控制荧光屏上电子束的强度,显示出与电子束同步的扫描图像。图像为立体形象,反映了标本的表面结构。为了使标本表面发射出次级电子,标本在固定、脱水后,要喷涂上一层重金属微粒,重金属在电子束的轰击下发出次级电子信号。
目前扫描电镜的分辨力为6~10nm,人眼能够区别荧光屏上两个相距0.2mm的光点,则扫描电镜的最大有效放大倍率为0.2mm/10nm=20000X。
它是依据电子与物质的相互作用。当一束高能的人射电子轰击物质表面时,被激发的区域将产生二次电子、俄歇电子、特征x射线和连续谱X射线、背散射电子、透射电子,以及在可见、紫外、红外光区域产生的电磁辐射。同时,也可产生电子-空穴对、晶格振动(声子)、电子振荡(等离子体)。原则上讲,利用电子和物质的相互作用,可以获取被测样品本身的各种物理、化学性质的信息,如形貌、组成、晶体结构、电子结构和内部电场或磁场等等。扫描电子显微镜正是根据上述不同信息产生的机理,采用不同的信息检测器,使选择检测得以实现。如对二次电子、背散射电子的采集,可得到有关物质微观形貌的信息;对x射线的采集,可得到物质化学成分的信息。正因如此,根据不同需求,可制造出功能配置不同的扫描电子显微镜。
XRD
即X-ray diffraction ,X射线衍射,通关对材料进行X射线衍射,分析其衍射图谱,获得材料的成分、材料内部原子或分子的结构或形态等信息的研究手段。
X射线是一种波长很短(约为20~0.06┱)的电磁波,能穿透一定厚度的物质,并能使荧光物质发光、照相乳胶感光、气体电离。在用电子束轰击金属“靶”产生的X射线中,包含与靶中各种元素对应的具有特定波长的X射线,称为特征(或标识)X射线。考虑到X射线的波长和晶体内部原子间的距离(10-8nm)相近,1912年德国物理学家劳厄(M.von Laue)提出一个重要的科学预见:晶体可以作为X射线的空间衍射光栅,即当一束 X射线通过晶体时将发生衍射,衍射波叠加的结果使射线的强度在某些方向上加强,在其他方向上减弱。分析在照相底片上得到的衍射花样,便可确定晶体结构。这一预见随即为实验所验证。1913年英国物理学家布喇格父子(W.H.Bragg,W.L.Bragg)在劳厄发现的基础上,不仅成功地测定了NaCl、KCl等的晶体结构,并提出了作为晶体衍射基础的著名公式——布喇格定律:
2d sinθ=nλ
式中λ为X射线的波长,n为任何正整数,又称衍射级数。其上限为以下条件来表示:
nmax=2dh0k0l0/λ,
dh0k0l0<λ/2
只有那些间距大于波长一半的面族才可能给出衍射,以此求纳米粒子的形貌。
当X射线以掠角θ(入射角的余角)入射到某一点阵平面间距为d的原子面上时,在符合上式的条件下,将在反射方向上得到因叠加而加强的衍射线。布喇格定律简洁直观地表达了衍射所必须满足的条件。当 X射线波长λ已知时(选用固定波长的特征X射线),采用细粉末或细粒多晶体的线状样品,可从一堆任意取向的晶体中,从每一θ角符合布喇格条件的反射面得到反射,测出θ后,利用布喇格公式即可确定点阵平面间距、晶胞大小和类型根据衍射线的强度,还可进一步确定晶胞内原子的排布。这便是X射线结构分析中的粉末法或德拜-谢乐(Debye—Scherrer)法的理论基础。而在测定单晶取向的劳厄法中,所用单晶样品保持固定不变动(即θ不变),以辐射束的波长作为变量来保证晶体中一切晶面都满足布喇格条件,故选用连续X射线束。如果利用结构已知的晶体,则在测定出衍射线的方向θ后,便可计算X射线的波长,从而判定产生特征X射线的元素。这便是X射线谱术,可用于分析金属和合金的成分。
X射线衍射现象发现后,很快被用于研究金属和合金的晶体结构,出现了许多具有重大意义的结果。如韦斯特格伦(A.Westgren)(1922年)证明α、β和δ铁都是体心立方结构,β-Fe并不是一种新相而铁中的α—→γ转变实质上是由体心立方晶体转变为面心立方晶体,从而最终否定了β-Fe硬化理论。随后,在用X射线测定众多金属和合金的晶体结构的同时,在相图测定以及在固态相变和范性形变研究等领域中均取得了丰硕的成果。如对超点阵结构的发现,推动了对合金中有序无序转变的研究,对马氏体相变晶体学的测定,确定了马氏体和奥氏体的取向关系;对铝铜合金脱溶的研究等等。目前 X射线衍射(包括散射)已经成为研究晶体物质和某些非晶态物质微观结构的有效方法。在金属中的主要应用有以下方面:
物相分析 是 X射线衍射在金属中用得最多的方面,分定性分析和定量分析。前者把对材料测得的点阵平面间距及衍射强度与标准物相的衍射数据相比较,确定材料中存在的物相;后者则根据衍射花样的强度,确定材料中各相的含量。在研究性能和各相含量的关系和检查材料的成分配比及随后的处理规程是否合理等方面都得到广泛应用。
精密测定点阵参数 常用于相图的固态溶解度曲线的测定。溶解度的变化往往引起点阵常数的变化;当达到溶解限后,溶质的继续增加引起新相的析出,不再引起点阵常数的变化。这个转折点即为溶解限。另外点阵常数的精密测定可得到单位晶胞原子数,从而确定固溶体类型;还可以计算出密度、膨胀系数等有用的物理常数。
取向分析 包括测定单晶取向和多晶的结构(见择优取向)。测定硅钢片的取向就是一例。另外,为研究金属的范性形变过程,如孪生、滑移、滑移面的转动等,也与取向的测定有关。
晶粒(嵌镶块)大小和微观应力的测定 由衍射花样的形状和强度可计算晶粒和微应力的大小。在形变和热处理过程中这两者有明显变化,它直接影响材料的性能。
宏观应力的测定 宏观残留应力的方向和大小,直接影响机器零件的使用寿命。利用测量点阵平面在不同方向上的间距的变化,可计算出残留应力的大小和方向。
对晶体结构不完整性的研究 包括对层错、位错、原子静态或动态地偏离平衡位置,短程有序,原子偏聚等方面的研究(见晶体缺陷)。
合金相变 包括脱溶、有序无序转变、母相新相的晶体学关系,等等。
结构分析 对新发现的合金相进行测定,确定点阵类型、点阵参数、对称性、原子位置等晶体学数据。
液态金属和非晶态金属 研究非晶态金属和液态金属结构,如测定近程序参量、配位数等。
特殊状态下的分析 在高温、低温和瞬时的动态分析。
此外,小角度散射用于研究电子浓度不均匀区的形状和大小,X射线形貌术用于研究近完整晶体中的缺陷如位错线等,也得到了重视。
X射线分析的新发展:金属X射线分析由于设备和技术的普及已逐步变成金属研究和材料测试的常规方法。早期多用照相法,这种方法费时较长,强度测量的精确度低。50年代初问世的计数器衍射仪法具有快速、强度测量准确,并可配备计算机控制等优点,已经得到广泛的应用。但使用单色器的照相法在微量样品和探索未知新相的分析中仍有自己的特色。从70年代以来,随着高强度X射线源(包括超高强度的旋转阳极X射线发生器、电子同步加速辐射,高压脉冲X射线源)和高灵敏度探测器的出现以及电子计算机分析的应用,使金属 X射线学获得新的推动力。这些新技术的结合,不仅大大加快分析速度,提高精度,而且可以进行瞬时的动态观察以及对更为微弱或精细效应的研究。
X射线衍射仪是利用衍射原理,精确测定物质的晶体结构,织构及应力,精确的进行物相分析,定性分析,定量分析.广泛应用于冶金,石油,化工,科研,航空航天,教学,材料生产等领域.
X射线是波长介于紫外线和γ射线间的电磁辐射。X射线管是具有阴极和阳极的真空管,阴极用钨丝制成,通电后可发射热电子,阳极(就称靶极)用高熔点金属制成(一般用钨,用于晶体结构分析的X射线管还可用铁、铜、镍等材料)。用几万伏至几十万伏的高压加速电子,电子束轰击靶极,X射线从靶极发出。电子轰击靶极时会产生高温,故靶极必须用水冷却。
XRDX-射线衍射(Wide Angle X-ray Diffraction)主要是对照标准谱图分析纳米粒子的组成,分析粒径,结晶度等。
应用时应先对所制样品的成分进行确认。在确定后,查阅相关手册标准图谱,以确定所制样品是否为所得。
[经典]FPC各流程控制要点
裁剪工序
裁剪是整个FPC源材料制作的首站,其品质问题对后其影响较大,而且是成本的一个控制点,由于裁剪机械程度较高,对机械性能和保养大为重要.而且裁剪机设备精度基本可以达到所裁剪物的精度要求,所以在对操作员操作技术及熟练程度和责任心提高为重点.
1. 原材料编码的认识
如: B 08 N N 0 0 R 1 B 250
B铜箔类
08:厂商代码
1N层别,N,铜片 S,单面板D,双面板
2N绝缘层类别 N.无绝缘层类别K.kapthon P.polyster
10 绝缘层厚度 0,无 1:1mil 2:2mil 20绝缘层与铜片间有无粘着剂
0无 1有
R,铜皮类别 A:铝箔H:高延展性电解铜
R:压延铜E:电解铜
1,铜皮厚度
B,铜皮处理 R:棕化G:normal 250,宽度码Cover lay编码原则.
2. 制程品质控制
根据首件
A.操作者应带手套和指套,防止铜箔表面因接触手上之汗渍等氧化.
B.正确的架料方式,防止邹折.
C.不可裁偏,手对裁时不可破坏冲制定位孔和测试孔.如无特殊说明裁剪公差为张裁时在±1mm 条
D.裁时在0.3mm内.
E.裁剪尺寸时不能有较大误差,而且要注意其垂直性,即裁剪为张时四边应为垂直(<2°).
G.材料品质,材料表面不可有皱折,污点,重氧化现象,所裁切材料不可有毛边,溢胶等.
3. 机械保养
严格按照之执行.
数控钻:
CNC是整个FPC流程的第一站,其品质对后续程序有很大影响.
CNC基本流程:组板→打PIN→钻孔→退PIN.
1. 组板
选择盖板→组板→胶带粘合→打箭头(记号)
基本组板要求:
单面板 15张 单一铜 10张或15张 双面板 10张 单一铜 10张或15张
黄色Coverlay 10张或15张 白色Coverlay 25张 辅强板 根据情况3-6张
盖板主要作用:
A:减少进孔性毛头
B:防止钻机和压力脚在材料面上造成的压伤
C:使钻尖中心容易定位避免钻孔位置的偏斜
D:带走钻头与孔壁摩擦产生的热量.减少钻头的 扭断
2. 钻针管制办法
a. 使用次数管制 b. 新钻头之辨识方法 c. 新钻头之检验方法
3. 品质管控点
a. 正确性依据对钻片及钻孔资料确认产品孔位与孔数的正确性,并check断针监视孔是否完全导通
d.外观品质不可有翘铜,毛边之不良现象
4. 制程管控
a. 产品确认
b.流程确认
c. 组合确认
d.尺寸确认
e. 位置确认
f. 程序确认
g.刀具确认
h.坐标确认
i. 方向确认.
5. 常见不良表现即原因
断针 a.钻机操作不当 b.钻头存有问题c.进刀太快等
毛边 a.盖板,垫板不正确 b. 钻孔条件不对 c. 静电吸附等等
7. 良好的钻孔品质
a. 操作人员技术能力,责任心,熟练程度
b. 钻针材质,形状,钻数,钻尖
c. 压板垫板材质,厚度,导热性
d. 钻孔机震动,位置精度,夹力,辅助性能
e. 钻孔参数分次/单次加工方法,转数,进刀退刀速.
f. 加工环境外力
h. 动,噪音,温度,湿度
P.T.H站
1.PTH原理及作用
PTH即在不外加电流的情况下,通过镀液的自催化(钯和铜原子作为催化剂)氧化还原反应,使铜离子析镀在经过活化处理的孔壁及铜箔表面上的过程,也称为化学镀铜或自催化镀铜,化学反应方程式:
2.PHT流程及各步作用
整孔→水洗→微蚀→水洗→酸洗→水洗→水洗→预浸→活化→水洗→速化→水洗→水洗→化学铜→水洗.
a. 整孔清洁板面,将孔壁的负电荷极化为正电荷,已利与带负电荷的钯胶体粘附.
b. 微蚀清洁板面粗化铜箔表面,以增加镀层的附着性.
c. 酸洗清洁板面除去氧化层,杂质.
d. 预浸防止对活化槽的污染.
e. 活化使钯胶体附着在孔壁.
f. 速化将Pd离子还原成Pd原子,使化学铜能锡镀上去.
g. 化学铜:通过化学反应使铜沉积于孔壁和铜箔表面.
3.PTH常见不良状况之处理
1.孔无铜
a:活化钯吸附沉积不好。
b:速化槽:速化剂溶度不对。
c:化学铜:温度过低,使反应不能进行反应速度过慢;槽液成分不对。
2.孔壁有颗粒,粗糙
a:化学槽有颗粒,铜粉沉积不均,须安装过滤机装置。
b:板材本身孔壁有毛刺。
3.板面发黑
a:化学槽成分不对(NaOH浓度过高)
b:建浴时建浴剂不足
镀铜:
镀铜即提高孔内镀层均匀性,保证整个版面(孔内及孔口附近的整个镀层)镀层厚度达到一定的要求。
制程管控:产品确认,流程确认,药液确认,机台参数的确认。
品质管控:
1,贯通性:第一槽抽2张,以20倍放大镜检查孔壁是否有镀铜完全附着贯通。
2,表面品质:铜箔表面不可有烧焦,脱皮,颗粒状,针孔及花斑不良等现象。
3,附着性:于板边任一处约为2.54*2.54cm2面积以切片从轴横轴各割10条,再以3M胶带粘贴3分钟后,以垂直向上接起不可有脱落现象。
化学铜每周都应倒槽,作用:有铜沉积于槽底,槽底的铜越来越多,消耗药水就越多,从而使成本变高。
切片实验:
程序:
1,准备好的切片所需的亚克力药粉及药水,凡士林,夹具,器皿。
2,根据要求取样制作试片。
3,先在器皿的内表面均匀地涂抹一层润滑作用的凡士林。
4,将试片用夹具夹好后放入器皿中。
5,将亚克力药粉与亚克力药水以10:8的比例调匀后缓慢地倒入器皿中。
6,待其凝固成型后直接将其取出。
7,将切片放在金相试样预磨机上研磨抛光至符合要求后用金相显微镜观察并记录其数值。
贴膜:
1,干膜贴在板材上,经露光后显影后,使线路基本成型,在此过程中干膜主要起到了影象转移的功能,而且在蚀刻的过程中起到保护线路的作用。
2,干膜主要构成:PE,感光阻剂,PET 。其中PE和PET只起到了保护和隔离的作用。感光阻剂包括:连接剂,起始剂,单体,粘着促进剂,色料。
作业要求:
1﹑保持干膜和板面的清洁。
2﹑平整度,无气泡和皱折现象。
3﹑附着力达到要求,密合度高。
作业品质控制要点:
1,为了防止贴膜时出现断线现象,须先用无尘纸除去铜箔表面杂质。
2,应根据不同板材设置加热滚轮的温度,压力,转数等参数。
3,保证铜箔的方向孔在同一方位。
4,防止氧化,不要直接接触铜箔表面,如果要氧化现象要用纤维刷刷掉氧化层。
5,加热滚轮上不应该有伤痕,以防止产生皱折和附着性不良。
6,贴膜后留置15min-3天,然后再去露光,时间太短会使干膜受UV光照射,发生的有机聚合反应未完全,太长则不容易被水解,发生残留导致镀层不良。
7,经常用无尘纸擦去加热滚轮上的杂质和溢胶。
8,要保证贴膜的良好附着性。
品质确认:
1,附着性:贴膜后以日立测试底片做测试,经曝光显影后线路不可弯曲变形或断等(以放大镜检测)
2,平整性:须平整,不可有皱折,气泡。
3,清洁性:每张不得有超过5点之杂质。
曝光:
1.原理:使线路通过干膜的作用转移到板子上。
2.作业要点:
作业时要保持底片和板子的清洁;底片与板子应对准,正确;不可有气泡,杂质;放片时要注意将孔露出。
双面板作业时应垫黑纸以防止曝光。
品质确认:
1.准确性:
a.定位孔偏移+0.1/-0.1以内
b.焊接点之锡环不可小于0.1mm(不可孔破为原则)
c.贯通孔之锡环不可小于0.1mm(不可孔破为原则)
2.线路品质:
不可有底片因素之固定断线,针孔或短路现象
底片的规格,露光机的曝光能量,底片与干膜的紧贴度都会影响线路的精密度。
*进行抽真空目的:提高底片与干膜接触的紧密度减少散光现象。
*曝光能量的高低对品质也有影响:
1,能量低,曝光不足,显像后阻剂太软,色泽灰暗,蚀刻时阻剂破坏或浮起,造成线路的断路。
2.能量高,则会造成曝光过度,则线路会缩细或曝光区易洗掉。
显像:
原理:
显像即是将已经暴过光的带干膜的板材,经过显影液(7.9g/L的碳酸钠溶液)的处理,将未受UV光照射的干膜洗去而保留受到UV光照射发生聚合反应的干膜使线路基本成型。
影响显像作业品质的因素:
1﹑显影液的组成.
2﹑显影温度。
3﹑显影压力。
4﹑显影液分布的均匀性。
5﹑机台转动的速度。
制程参数管控:药液溶度,显影温度,显影速度,喷压。
显像作业品质控制要点:
1﹑出料口扳子上不应有水滴,应吹干净。
2﹑不可以有未撕的干膜保护膜。
3﹑显像应该完整,线路不可锯齿状,弯曲,变细等状况。
4﹑显像后裸铜面用刀轻刮不可有干膜脱落,否则会影响时刻作业品质。
5﹑干膜线宽与底片线宽控制在+/-0.05mm以内的误差。
6﹑线路复杂的一面朝下放置,以避免膜渣残留,减少水池效应引起的显影不均。
7﹑根据碳酸钠的溶度,干膜负荷和使用时间来及时更新影液,保证最佳的显影效果。
8﹑控制好显影液,清水之液位。
9﹑吹干风力应保持向里侧5-6度。
10﹑应定期清洗槽内和喷管,喷头中之水垢,防止杂质污染板材和造成显影液分布不均匀性。
11﹑防止操作中产生卡板,卡板时应停转动装置,应立即停止放板,并拿出板材送至显影台中间,如未完全显影,因进行二次显影。
12﹑显影吹干后之板子应有吸水纸隔开,防止干膜粘连而影响到时刻品质。
品质确认:
完整性:显像后裸铜面以刀片轻刮不可有干膜残留。
适当性:线路边缘,不可呈锯齿状或线路明显变细,翘起之现象,显像后,干膜线宽与底片线宽需在+0.05/-0.05m内。
表面品质:需吹干,不可有水滴残留。
蚀刻剥膜:
原理:蚀刻是在一定的温度条件下(45+5)蚀刻药液经过喷头均匀喷淋到铜箔的表面,与没有蚀刻阻剂保护的铜发生氧化还原反应,而将不需要的铜反应掉,露出基材再经过剥膜处理后使线路成形。
蚀刻药液的主要成分:氯化铜,双氧水,盐酸,软水(溶度有严格要求)
品质要求及控制要点:
1﹑不能有残铜,特别是双面板应该注意。
2﹑不能有残胶存在,否则会造成露铜或镀层附着性不良。
3﹑蚀刻速度应适当,不允收出现蚀刻过度而引起的线路变细,对蚀刻线宽和总pitch应作为本站管控的重点。
4﹑线路焊点上之干膜不得被冲刷分离或断裂。
5﹑蚀刻剥膜后之板材不允许有油污,杂质,铜皮翘起等不良品质。
6﹑放板应注意避免卡板,防止氧化。
7﹑应保证蚀刻药液分布的均匀,以避免造成正反面或同一面的不同部分蚀刻不均匀。
制程管控参数:
蚀刻药水温度:45+/-5℃ 双氧水的溶度﹕1.95~2.05mol/L
剥膜药液温度﹕ 55+/-5℃ 蚀刻机安全使用温度≦55℃
烘干温度﹕75+/-5℃ 前后板间距﹕5~10cm
氯化铜溶液比重﹕1.2~1.3g/cm3 放板角度﹑导板﹑上下喷头的开关状态
盐酸溶度﹕1.9~2.05mol/L
品质确认:
线宽:蚀刻标准线为.2mm &0.25mm﹐其蚀刻后须在+/-0.02mm以内。
表面品质:不可有皱折划伤等。
以透光方式检查不可有残铜。
线路不可变形
无氧化水滴
光泽锡铅
一﹑制程中常见不良及其原因:
1.结合力差(附着力不良)。前处理不良;电流过大;有铜离子等得污染。
2.镀层不够光亮。添加剂不够;锡铅比不当。
3.析气严重。游离酸过多;二价锡铅浓度太低。
4.镀层混浊。锡铅胶体过多,形成沉淀。
5.镀层发暗。阳极泥过多;铜箔污染。
6.镀锡厚度偏大。电镀时间偏大。
7.镀锡厚度偏小。电镀时间不够。
8.露铜。有溢胶。
二﹑品质控制﹕
1﹑首件检查必须用3M600或3M810胶带试拉﹐验证其附着性
2﹑应检查受镀点是否完全镀上﹐不可有未镀上而露铜之处
3﹑须有光泽性﹐不可有变黑﹑粗糙或烧焦
4﹑用x射线厚度仪量测镀层厚度
*在电流密度为2ASD时,1分钟约镀1um。
三﹑电镀条件的设以决因素﹕
1﹑电流密度选择
2﹑受镀面积大小
3﹑镀层厚度要求
4﹑电镀时间控制
四﹑外观检验﹕
1﹑镀层膜厚量测工具为X-Ray测量仪
2﹑受镀点完全镀上﹐不可有遗漏未镀上之不正常现象
3﹑镀层不可变黑或粗糙﹑烧焦
4﹑镀层不可有麻点﹑露铜﹑色差﹑孔破﹑凹凸不平之现象
5﹑以3M600或3M810之胶带试拉﹐不可有脱落之现象
研磨:
研磨是FPC制程中可能被多次利用的一个辅助制程,作为其它制程的预处理或后处理工序,一般先对板子进行酸洗,微蚀或抗氧化处理,然后利用尼龙轮刷对板子的表面进行刷磨以除去板子表面的杂质,黑化层,残胶等。
研磨程序:
入料--去黑化层--水洗--磨刷--加压水洗--切水挤干--吹干--烘干--出料
研磨种类﹕
1﹑待贴膜﹕双面板去氧化,拉伸(孔位偏移) 单面板﹕去氧化
2﹑待假贴Coverlay﹕打磨﹐去红斑(剥膜后NaOH残留)﹐去氧化
3﹑待假贴铺强﹕打磨﹐清洁
4﹑待电镀﹕打磨﹐清洁﹐增加附着力
5﹑电镀后﹕烘干﹐提高光泽度
表面品质:
1.所需研磨处皆有均匀磨刷之痕迹。
2.表面需烘干完全,不可有氧化或水滴残留等。
3.不可有切水滚轮造成皱折及压伤。
4.不可有铜皮因磨刷而翘起或铜粉累积在coverlay边缘翘起之情形。
常见不良和预防:
1﹑表面有水滴痕迹,此时应检查海绵滚轮是否过湿,应定时清洗,挤水。
2﹑氧化水完全除掉,检查刷轮压力是否足够,转运速度是否过快。
3﹑黑化层去除不干净。
4﹑刷磨不均匀,可以用单张铜箔检查刷磨是否均匀。
5﹑因卡板造成皱折或断线。
斑斑第一帖---PCB流程发展简史
1.1一般术语
印制电路——在绝缘基材上,按预定设计形成的印制元件或印制线路以及两者结合的导电图形。
印制线路——在绝缘基材上形成的,用作元器件之间的电气连接的导电图形。
印制板 ——印制电路或印制线路成品板通称印制板。
多层印制板——由多于两层的导电图形与绝缘材料交替粘合在一起,且层间导电图形互连的印制板。
齐平印制板——导电图形的外表面和绝缘基材的外表面处于同一平面的印制板。
1.2 印制板在电子设备中的功能
1、提供集成电路等各种电子元器件固定、组装的机械支撑。
2、实现集成电路等各种电子元器件之间的电气连接或电绝缘。提供所要求的电气特性,如阻抗等。
3、为自动锡焊提供阻焊图形。为元器件安装、检查、维修提供识别字符和图形。
1.3发展简史
1、20世纪初有人在专利中提及印制电路的基本概念。
2、1947年美国航空局和美国标准局发起印制电路首次技术讨论会。
3、50年代初期,由于铜箔层压板的铜箔制造技术得以解决和层压板的粘合强度及其耐焊性问题得到解决,其稳定性可*,实现了印制板工业化大生产。铜箔蚀刻法成为印制板制造技术的主流。
4、60年代,镀覆孔双面印制板实现大规模生产。
5、70年代,多层印制板得到迅速发展。
6、80年代,表面安装印制板(SMB)逐渐替代插装式印制板,并成为主流。
7、90年代以来,表面安装从四边扁平封装(QFP)向球栅阵列封装(BGA)发展。同时,芯片级封装(CSP)印制板和以有机层板材料为基板的多芯片模块封装技术(MCM-L)用印制板有迅速发展。
8、1990年日本IBM公司开发出表面积层电路技术(surface laminar circuit)( SLC )
9、能否生产BUM(积层式多层板)现已成为衡量一个印制板厂技术的重要标志。
10、美国1994年成立互连技术研究协会(ITRI),提出了HDI这个高密度互连概念。HDI板其孔径≤φ0.15mm,孔环径≤φ0.25mm,线宽和间距≤0.075mm。
1.4 印制电路板典型工艺
1.4-1 单面印制电路板典型工艺:
单面覆铜板→下料→冲(钻)基准孔→磨板→风干→网印抗蚀图形→固化→蚀刻 →去(退)膜 → 干燥 →检查→磨板→网印阻焊图形 → 固化→ 网印标记字符→固化→钻冲模定位孔→预热→碑板→ 测试→ 清洗 →涂助焊剂→干燥→检验→包装 →入仓
1. 4-2双面印制电路板典形工艺:
① 图形电镀—蚀刻法工艺:
双面覆铜箔板 →下料 →数控钻孔→沉铜→磨板→贴干膜或涂布湿膜→曝光显影→检验修板→图形电镀→去膜→蚀刻→检验修板→网印阻焊图形→固化→网印字符→固化→成型→清洗→检验→包装→入仓
② 热风整平工艺:
下料→钻孔→沉铜→图形转移→电锡铅→退膜→蚀刻→退锡铅→检验修板→网印阻焊→热风整平→网印字符→成型→清洗→检验→包装→入仓
1.4-3多层印制电路板典型工艺:
开料→磨板→贴干膜或涂布湿膜→内层线路→曝光显影→蚀刻→检验修板→黑化→叠层→层压→检验→钻孔→膨松→除胶渣→中和→沉铜→图形转移→电镀→检验修板→网印阻焊→网印字符→成型→清洗→成品测试→检验→包装→入仓
1.4-4BUM典型工艺:
①芯板→堵孔→涂布感光性环氧树脂→曝光、显影制出盲孔→化学镀铜(沉铜)→导体图形制作,形成第一层→重复涂布感光性环氧树脂形成第二层→涂阻焊层→连接盘镀金→成品板
②芯片→堵孔→两面压附树脂铜箔→激光钻出盲孔→用机械钻床钻贯通孔→沉铜→外层导体图形制作→阻焊→连接盘镀覆→成品
1.5 印制板生产技术发展动向
1.5-1CAD/CAM系统
①有处理照相底版的功能
②系统内有设计规则检查(DRC)或制造规则检查(MRC)
③有电镀铜面积计算
④有删除焊盘上字符功能
⑤为多层板内层删除无用焊盘
⑥为多层板压制增加排胶条等
1.5-2高精度照相底版制作技术
①光绘机向高精度和高速度的方向发展。
以色列ORBOTECH公司的光绘系统精度可达0.003mm
②新的制版方法——使用金属膜胶片激光直接成像,如比利时BARCO公司开发的Elise激光直接成像仪,使用Agra公司直接成像胶片,最小线径可达0.05mm,其精度<2um,重复精度< 3.2um。
1.5-3盲孔、埋孔制造技术
①盲孔是连接多层板外层与一个或多个内层的镀铜孔。
②埋孔是在多层板内部连接两个或两个以上内层的镀铜孔。
③埋孔和盲孔大都是0.05-0.15mm的小孔。
1.5-4高精度、高精度、细导线成像技术
①干膜向薄型、无Mylar、高速感光和专用途方向发展。
②湿贴膜技术
③ED抗蚀剂
采用电沉积(ED)抗蚀剂是目前制作细导线的先进PCB工艺。 其工艺过程为:
表面处理→ED电沉积(10-20um厚)→水洗→干燥→涂覆保护层(PVA1-3um厚)→干燥→冷却→感光成像。
④ED抗蚀剂材料美国杜邦、日本关西涂料公司出售。
⑤激光直接成像技术:用CAD/CAM系统直接激光成像机,直接扫描专门的激光型感光干膜而成像。 一般干膜可做出0.10mm细导线;湿膜为0.075mm;溥型及无Mylar及ED抗蚀剂、激光成像为0.05mm。
采用浮石粉刷板机或化学清洗设备代替尼龙磨料刷板机和平行光源曝光机可提高细导线工艺精度。
1.5-5微小孔深孔镀技术
①板厚/孔径比大于5的孔称为深孔。
②在深孔镀时,因为孔径小、孔深。镀时电力线分布不均匀,镀液在孔内不易流动交换。易在孔壁发生气泡等原因,孔壁镀层均匀性是很难达到的。
③直接电镀技术
A:碳膜法,美国电化学公司的shadowTM工艺;MacDemid公司的黑孔技术。
B:钯膜法,美国shipley的crimson工艺;安美特(Atotech)公司的Neopect工艺。
C高分子导电膜法。德国Blasberg公司的DMS技术。
1.5-6积层法多层板(BUM)技术
1.5-7导通孔堵孔技术(塞孔技术)
1.5-8洁净技术
①照相制板、贴膜曝光、网印、多层板叠层要求(恒温20±2℃恒湿55±10%Rh)
②生产0.13mm细导线洁净度要求10000级,工艺用水电阻大于1MΩ的去离子水。
1.5-9清洁生产
①推行ISO14000
②要求 A节约原材料和能源 B取消有毒原材料 C减少废弃物排放量和毒性。
1:工程、光绘
收集文件→文件处理→依据客户要求结合公司设备、技术能力确定生产方案→拟定工程指示书、生产制作单→处理、光绘菲林→网版、治具、模具准备
2:开料、钻孔
a .孔加工方式:啤孔、手动钻孔、数控钻、铣,激光钻孔
b. 数控钻孔工艺的质量
①钻床的好坏
②钻咀的质量、种类、几何开形状、材质、精度、翻磨质量。
③工艺参数:切削速度、进给速度、转速,寿命。
④盖垫板质量
⑤板材质量:材质、厚度、铜厚、树脂含量,平整性。
⑥加工环境:经验、温湿度、外力振动、照明、管理。
3:孔金属化
a.孔金属化方式:空心铆钉连接、PTH(沉铜)、直接电镀(钯系列、导电性高分子系列、碳黑)
b. PTH(沉铜)工艺:
钻孔板→去毛刺→清洁调整处理→微蚀刻(粗化)→预浸→活化→ 沉厚铜(1.5-2.0um)→抗氧化 →沉簿铜(0.3-0.5um)→浸稀酸→全板电铜
①去钻污方法:H2SO4 (86%以上)、KMnO4 (高锰酸钾)溶胀→高锰酸钾→中和
②微蚀:去除铜面氧化层、蚀掉2—3um铜层,使铜表面粗糙。
③预浸:防止将水带到活化液中,防止活化液的浓度和PH值发生变化。
④ 活化:在绝缘基体吸附一层具有催化能力的金属颗粒,使经活化的基体表面具有催化还原金属的能力,从而使化学镀铜的反应顺利进行。
⑤加速:5%NaOH溶液,提高胶体钯的活化性能。
⑥沉铜:自催化还原反应,Cu2+ 得到电子还原为金属铜,还原剂放出电子,本身被氧化。
4: 图像转移:
a. 图像转移方法:网印抗蚀图形,底片接触曝光技术,激光直接成像
b. 工艺:涂布湿膜→预烤→冷却→贴干膜静→静置凉板→曝光→显影→检查
c. 影响图像转移质量的因素
①环境温湿度
②照相底版质量
③设备
④工艺技术
5: 电镀
1.镀锡铅
工艺:酸性镀铜→
2.镀镍金
3.沉镍金、锡、银、钯
热风整平(63sn.37pb)
OSPC(有机助焊保护膜)技术
6: QC检查(MI2、MI3)
通过目视或测试机检验PCB外观和功能是否符合要求
7: 丝印
a.工艺:
板面清洁→印刷阻焊→预烤(75±5℃)→曝光、显影→后烤(150℃)
固化油(150℃,60分)
b.预烤的目的:在于蒸发油墨中所含的溶剂(约25%),使皮膜成为不粘底片的状态,以便于曝光作业。预烤不足,曝光时会粘底片,出现压痕,污染底片,表面失去光泽和显影后掉油等问题;预烤温度过高,时间过长,则会出现显影不洁,引起上锡不良等问题。
c.后烤的目的:使阻焊油墨彻底固化,形成稳固的网状结构,达到其电性和物化性能。
d.阻焊的作用:防止导线刮花,抗潮湿、耐热、绝缘、美观等作用。
8:成型
方式:剪切、冲裁、锣、V-cut、激光切割。
9: 包装
a. 工艺:
吹灰→板面清洁离心机→干板→ 检查→FQC→包装→OQA→进仓→洗板机洗板
b. 包装的作用:防潮防湿、美观防损、便于运输,便于点数。
随着电子技术的发展,电路板上的器件引脚间距越来越小,器件排列更加密集,电场梯度更大,这都使得电路板对腐蚀更为敏感。另一方面,电路板应用环境的拓展和产品可靠性寿命要求的不断增加,使得电路板发生腐蚀失效的风险不断增加。其中大气环境作为电路板腐蚀发生的外部条件,大气污染物在产品腐蚀发生的过程中扮演了重要角色。由于与大气污染物相关的故障通常在电子产品使用一段时间后才能显现出来,这意味着一旦发生了腐蚀引起的故障,相同环境下相同使用年限的产品将进入故障集中爆发期。同时污染对电子产品的影响是不可逆的,会对维修造成很大困难,甚至导致产品的报废。因此在产品设计之初进行相应的大气污染物的防护设计很有必要。在以往研究中的有关电路板腐蚀问题,主要聚焦于特定类型的腐蚀机理及缓蚀剂的研究。电路板涂覆涂层的研究中,偏向在平面条件下保护涂层的不同材质、不同厚度等因素对防护和可维修性的分析,少有专门针对工程实际中电路板防护涂层的涂覆薄弱点评估和关于电路板腐蚀防护的系统性介绍。在以往研究的基础上,文中结合电路板大气污染物防护的实际问题,从电路板典型腐蚀失效和保护涂层的涂覆薄弱点入手,探讨电路板类产品应对大气污染物的具体防护措施。
大气污染物分类
根据ANSI/ISA-71.04的描述,影响设备工作的空气中的污染物有固体、液体、气体三种形态。各形态中对电路板影响较大的物质如下所述。
1)固态微粒——灰尘。灰尘中通常含有氯离子、硫酸根、硝酸根等水溶性盐分。除了直接使设备内部金属接插件或金属触点接触不良外,还会在金属表面促使水膜的形成。水溶性成分溶解在水膜中,将会加速金属腐蚀的发生,导致电路板绝缘阻抗下降。若在电路板工作过程中,可能会发生更为严重的电偶腐蚀。
2)液态空气污染物——盐雾。此处描述的液态空气污染物除了广义上的液体外,还包含了被气体携带的液体和空气中雾化液滴状物的气溶胶。沿海地区的空气中,盐雾含量较高,主要成分是NaCl,NaCl在化学上比较不活泼,但在潮湿及有水的情况下,会产生Cl-,与Cu、Ni、Ag等金属或合金反应。同时NaCl作为一种强电解质,在低于临界相对湿度的情况下,可以在附着表面发生结露,离解生成Cl-,溶解在电路板表面的液膜或液滴中。在一定浓度Cl-下,电子设备开始出现局部腐蚀,随着新的不致密腐蚀产物的出现,进一步破坏设备表面的防护层,腐蚀速率迅速增大。
3)气态空气污染物——S02、H2S。含硫化合物是大气中最主要的污染物之一,大气中H2S和SO2主要来自采矿、含硫燃料的燃烧及冶金、硫酸制造等工业过程。H2S和SO2是强可变组分,H2S在加热情况下可分解为H2和S。排放到空气中的SO2与潮湿空气中的O2和水蒸气反应,在粉尘等催化剂作用下化合生成H2SO4。
腐蚀失效机理和形态
由腐蚀引起的电化学迁移(Electrochemical migration,ECM)是电子产品腐蚀失效的主要原因。电化学迁移存在两种不同的形式:一种是金属离子迁移到阴极,还原沉积形成枝晶,并向阳极生长;另外一种是阳极向阴极生产的导电阳极丝(Conducting anodic filaments,CAF)。金属的电化学迁移最终会造成电路的短路漏电流,从而造成系统的失效。
电路板出现的大气腐蚀机制中,材料表面的吸附液膜扮演着重要角色。液膜厚度在1μm以上的腐蚀最为严重,液膜之下主要发生的是电化学反应。常见的电子设备在空气中出现的腐蚀形态,可以大致分为以下几类。
1)局部腐蚀。腐蚀集中在金属材料表面的小部分区域内,其余大部分表面腐蚀轻微或不发生腐蚀。主要由于金属表面状态(涂层缺陷、化学成分等)和腐蚀介质分布的不均匀,导致电化学性不均匀,即不同的部位具有不同的电极电位,从而形成电位差,驱动局部腐蚀的产生。在局部腐蚀过程中,阳极区域和阴极区域区别明显,通常形成小阳极大阴极的组态,阳极腐蚀严重。
2)微孔腐蚀。一种特殊的局部腐蚀,常见于镀金元件上的特殊电偶腐蚀。由于镀层表面微孔或其他缺陷的存在,中间过渡层甚至基体金属暴露在大气中,Au与其他金属形成大阴极小阳极的电偶对,发生电化学腐蚀。腐蚀产物的出现进一步导致表面缺陷的增大,最终导致镀层破坏。受接触表面微孔腐蚀产物的影响,腐蚀区域将表现出较高的接触阻抗和相移。
3)电解腐蚀。在相邻导体间距较近且存在偏压的情况下,将形成较强的电场。若此时导体存在液膜,电位较高的导体将会被溶液电解,形成的离子向另一导体迁移,导致导体间绝缘性能迅速下降,破坏导体,最终导致设备失效。
典型腐蚀与防护
电路板典型腐蚀失效
电路板上会用到多种物料,物料的选型对于腐蚀反应的发生有重要影响。以工程实际中遇到的厚膜电阻硫化、SMD LED两种典型硫化失效和印制板铜腐蚀为例,比较不同器件封装结构和材料选择对电路板抗腐蚀能力的影响。
1)厚膜贴片电阻硫化腐蚀。厚膜电阻的面电极含有银元素,银元素暴露在空气中极易与硫发生化学反应。如果外部保护层和电镀层没有紧密结合,则面电极会与空气中的硫接触。当空气中含有大量含硫化合物时,银与硫化物反应生成硫化银,由于硫化银不导电,且体积比银大,在化合后,体积膨胀,导致原先银层的断层,电阻值逐渐增大,直至断路。为了防止厚膜电阻硫化,可选用抗硫化能力强的电阻。在面电极上涂覆保护层,通过导入不含Ag、且具有导电性的硫化保护层,从而保护上面电极,彻底杜绝硫化的通路。典型抗硫化电阻封装结构如图1所示。通过1年的对比应用试验表明,电阻硫化失效率大大降低,新封装结构的厚膜电阻具有良好的抗硫化作用。
图1 带抗硫化涂层的贴片电阻结构
2)硅胶封装LED硫化腐蚀失效。典型的贴片封装LED结构如图2所示,其中与金线相连的一般为镀银支架,灌封材料则通常根据厂商而异。实际应用中,在含硫量较高的地区使用硅胶封装LED,被硫化的风险很高。如图3所示,硅胶封装的LED内部支架已经发黑,经过测试,无法点亮。将失效硅胶封装LED机械开封后,在金相显微镜下观察到内部键合点和支架的形貌如图4和图5所示。支架出现严重发黑,甚至露出基底铜层的颜色,外部键合点已脱落,芯片位置的银胶发黑严重。选取LED支架区域的两个位置进行EDS能谱分析,如图6所示。在支架区域分别检测到了质量分数为13.02%和5.38%的硫元素。
图2 贴片LED结构
图3 被硫化的硅胶封装LED
图4 金相显微镜下的被硫化的硅胶封装LED开封图片
图5 LED支架区域SEM图像
图 6EDS分析结果
硅胶多孔结构对空气中硫化物有吸附作用,PLCC表面灌注型发光二极管如果选用硅胶进行封装,则会有硫化的风险。因为硅胶具有透湿透氧的特性,空气中的硫离子易穿透硅胶分子间隙,进入LED内部,与支架镀银层发生化学反应,导致支架功能区黑化,光通量下降,直至出现死灯。如果选用环氧树脂进行封装(见图7),则能有效阻止硫离子的侵蚀。选用环氧树脂封装的LED,现场使用1年后没有发现硫化的现象。
图7 环氧树脂封装的LED
3)印刷电路板的铜腐蚀。印刷电路板使用铜作为电气传输介质,铜腐蚀不仅会影响产品外观,更容易导致电气连接短路或断路问题。为提高电路板覆铜的抗腐蚀能力,常见的表面处理方式有:热风整平喷锡、化学镍金和化学浸银。相关研究表明,在容易产生凝露的含硫大气环境下,热风整平喷锡抗腐蚀能力最强,其次是化学镍金。
表面处理并不能完全确保电路板在恶劣环境下覆铜不被腐蚀。如图8所示,化学镍金电路板底部接地覆铜区域出现覆铜腐蚀现象,甚至被三防漆覆盖区域的过孔也出现了明显的腐蚀产物堵塞过孔。如图9所示,经过热风整平喷锡的电路板过孔出现腐蚀现象,电路板过孔位置是腐蚀现象出现的高发区域。除了改变表面处理方式和增加镀层厚度外,还应调整电路板生产和集成测试过程中的工艺参数,尤其应避免ICT测试过程中,过高探针压力破坏镀层。ICT测试压痕如图10所示。
图8 化学镍金处理的电路板过孔腐蚀
图9 热风整平喷锡处理的电路板过孔腐蚀
图10 电路板ICT测试压痕
涂层涂覆
印制电路板的器件腐蚀通常从引脚或器件边缘诱发,历经表面涂层损伤、界面腐蚀扩展、金属腐蚀扩展、元器件内腔腐蚀等阶段。三防漆作为一种特殊配方的涂料,用于保护电路板免受环境的侵蚀。三防漆的种类和涂覆厚度是影响防护效果的重要因素。业内常根据GB/T 13452.2-2008测量平面位置的涂覆材料厚度,有湿膜厚度、干膜厚度的区分。IPC-A-610给出了不同类型的三防漆推荐涂覆厚度,见表1。根据实际应用,对于受控环境,可以无需涂覆三防或采用薄层涂覆工艺,涂覆厚度处于范围下限;对于不受控环境或恶劣环境,则建议采用厚层涂覆工艺,涂覆厚度处于范围上限。
表1 IPC-A-610建议涂覆厚度
在实际生产中,发现引脚处干膜厚度有时仅能达到平面区域干膜厚度的1/3。原因是三防漆具有一定流动性,在喷涂后,受到重力和引脚间的毛细作用,器件引脚处的三防漆厚度较薄,成为三防防护的薄弱点(见图11),极易形成腐蚀。如图12所示,使用一段时间的电路板器件引脚处出现了三防漆缺失和引脚腐蚀现象。
图11 保护涂层的薄弱点
图12 器件三防缺失和引脚腐蚀
为了评估不同种类三防漆材质及涂覆厚度在电路板防护效果,选取三块相同电路板,设置不同的涂覆参数,见表2。方案A、B中的丙烯酸三防漆在使用前需要稀释,方案C中的触变型聚氨酯三防漆是改良型的聚氨酯三防漆,具有剪切时黏度较小、便于喷涂均匀、停止剪切时黏度迅速上升的特点。根据GB/T 2423.17进行恒定盐雾试验168h之后,按照GB/T 2423.18采用等级II的要求进行交变盐雾6个周期试验,时间为144h。试验方法和参数见表3和图13。
表2 试验电路板样品涂覆参数
表3 盐雾试验参数
图13盐雾试验方案
试验结果如图14所示。在经过恒定盐雾试验和交变盐雾试验之后,方案A的电路板在涂层的边沿位置出现了涂层脱落,贴片器件和引脚焊点位置出现鼓泡,部分器件引脚出现了较严重腐蚀,在紫光灯下器件引脚位置三防漆脱落情况严重。方案B的电路板在紫光灯下器件引脚位置三防漆出现少量脱落,引脚出现轻微腐蚀,电路板在平面位置出现一些鼓泡,贴片器件的边沿位置出现一定鼓泡。方案C的电路板三防漆外观未见明显破损,在紫光灯下器件引脚位置三防漆留存相对完整,在PCB平面位置有少量鼓泡情况出现,在贴片器件引脚处出现少量气泡。
图14 盐雾试验后的电路板三防漆外观对比
试验结果表明,在三防漆涂覆工艺相同的前提下,不同物性参数和涂覆厚度的三防漆在电路板的防护效果上有较大的差异。适当提高三防漆材质黏度和厚度能有效改善器件引脚处和器件边沿处防护效果,保证涂层的完整性,进一步提高了电路板器件工作过程的抗腐蚀能力。
结构防护
结构密封防护设计是为隔绝或减少外部腐蚀介质的影响,保持内部绝缘件和电子器件原有的性能。例如将设备置于高防护等级的防护外壳中,如图15所示。
图15 IP67电路板防护外壳
提高防护等级可能会导致如散热、人机交互、成本等方面的问题。当系统中引入风扇时,需注意风道设计。根据设备的使用环境,合理选择产品的散热方式和风扇的位置。当风扇置于进风口位置,应注意避免在设备内部形成涡流,且进风口位置避免放置管脚密度较大的器件,以减少局部区域积灰严重的问题出现,避免固体颗粒污染物聚集。
结论
针对电路板的大气污染物防护问题,在应力因素分析和已有腐蚀故障机理研究的基础上,分别从器件级、单板级和设备级,在物料选型、防护涂层和结构防护设计方面提出了多种分析验证方法和防护措施。
1)对于腐蚀器件,可用金相显微、SEM及EDS等手段确定具体污染源,针对污染源种类和入侵路径选择合适封装的器件。
2)受重力和引脚间毛细作用的影响,器件引脚和边缘位置通常是涂层涂覆的薄弱点。带有保护涂层的电路板腐蚀通常从引脚或器件边缘诱发,器件引脚位置为保护涂层的涂覆薄弱点。提高涂层材料黏度和厚度,可以有效提升保护电路板对污染物的抗腐蚀能力。
3)适当提高结构设计的IP防护等级和合理的风道设计,可以有效降低大气污染物入侵。
该研究提出的相关方法和相关案例分析为电路板腐蚀失效分析和防护设计提供了参考和借鉴。
浅谈爬行腐蚀现象
一、问题的提出
1.一批运行了相当一段时间后的用户单板中,发现其中6块单板过孔上发黑而导致工作失常,如图1所示。
图1 电容、电阻端子焊点发黑
2.一批PCBA在运行了一段时间后出现了4块因电阻排焊盘和焊点发暗而导致电路工作不正常,如图2所示。
图2 电阻排焊盘和焊点发暗
不管是失效的电容、电阻还是电阻排,端子接口的位置都检测到大量硫元素的存在。对失效样品上残留的尘埃进行检测也发现S元素含量很高。因此,从现象表现和试验分析的结果看,造成故障的原因是应用环境中的硫浸蚀。
二、爬行腐蚀的机理
爬行腐蚀发生在裸露的Cu面上。Cu面在含硫物质(单质硫、硫化氢、硫酸、有机硫化物等)的作用下会生成大量的硫化物。Cu的氧化物是不溶于水的。但是Cu的硫化物和氯化物却会溶于水,在浓度梯度的驱动下,具有很高的表面流动性。生成物会由高浓度区向低浓度区扩散。硫化物具有半导体性质,且不会造成短路的立即发生,但是随着硫化物浓度的增加,其电阻会逐渐减小并造成短路失效。
此外,该腐蚀产物的电阻值会随着温度的变化而急剧变化,可以从10MΩ下降到1Ω。湿气(水膜)会加速这种爬行腐蚀:硫化物(如硫酸、二氧化硫)溶于水会生成弱酸,弱酸会造成硫化铜的分解,迫使清洁的Cu面露出来,从而继续发生腐蚀。显然湿度的增加会加速这种爬行腐蚀。据有关资料报导,这种腐蚀发生的速度很快,有些单板甚至运行不到一年就会发生失效,如图3、图4所示。
图3 电阻排焊点的爬行腐蚀
图4 PTH过孔上的爬行腐蚀
三、爬行腐蚀的影响因素
1.大气环境因素的影响作为大气环境中促进电子设备腐蚀的元素和气体,被列举的有:SO2、NO2、H2S、O2、HCl、Cl2、NH3等,腐蚀性气体成分的室内浓度、蓄积速度、发生源、影响和容易受影响的材料及容许浓度如表1所示。上述气体一溶入水中,就容易形成腐蚀性的酸或盐。表1
2.湿度根据爬行腐蚀的溶解/扩散/沉积机理,湿度的增加应该会加速硫化腐蚀的发生。
Ping Zhao等人认为,爬行腐蚀的速率与湿度成指数关系。Craig Hillman等人在混合气体实验研究中发现,随着相对湿度的上升,腐蚀速率急剧增加,呈抛物线状。以Cu为例,当湿度从60%RH增加到80%RH时,其腐蚀速率后者为前者的3.6倍。
3.基材和镀层材料的影响
Conrad研究了黄铜、青铜、CuNi三种基材,Au/Pd/SnPb三种镀层结构下的腐蚀速率,实验气氛为干/湿硫化氢。结果发现:基材中黄铜抗爬行腐蚀能力最好,CuNi最差;表面处理中SnPb是最不容易腐蚀的,Au、Pd表面上腐蚀产物爬行距离最长。
Alcatel-Lucent、Dell、Rockwell Automation等公司研究了不同表面处理单板抗爬行腐蚀能力,认为HASL、Im-Sn抗腐蚀能力最好,OSP、ENIG适中,Im-Ag最差。Alcatel-Lucent认为各表面处理抗腐蚀能力排序如下:ImSn~HASL5ENIG>OSP>ImAg化学银本身并不会造成爬行腐蚀。但爬行腐蚀在化学银表面处理中发生的概率却更高,这是因为化学银的PCB露Cu或表面微孔更为严重,露出来的Cu被腐蚀的概率比较高。
4.焊盘定义的影响
Dell的Randy研究认为,当焊盘为阻焊掩膜定义(SMD)时,由于绿油侧蚀存在,PCB露铜会较为严重,因而更容易腐蚀。采用非阻焊掩膜(NSMD)定义方式时,可有效提高焊盘的抗腐蚀能力。
5.单板组装的影响。
① 再流焊接:再流的热冲击会造成绿油局部产生微小剥离,或某些表面处理的破坏(如OSP),使电子产品露铜更严重,爬行腐蚀风险增加。由于无铅再流温度更高,故此问题尤其值得关注。
② 波峰焊接:据报导,在某爬行腐蚀失效的案例中,腐蚀点均发生在夹具波峰焊的阴影区域周围,因此认为助焊剂残留对爬行腐蚀有加速作用。其可能的原因是:●助焊剂残留比较容易吸潮,造成局部相对湿度增加,反应速率加快;●助焊剂中含有大量污染离子,酸性的H+还可以分解铜的氧化物,因此也会对腐蚀有一定的加速作用。四、对爬行腐蚀的防护措施随着全球工业化的发展,大气将进一步恶化,爬行腐蚀将越来越受到电子产品业界的普遍关注。
归纳对爬行腐蚀的防护措施主要有:(1)采用三防涂敷无疑是防止PCBA腐蚀的最有效措施;(2)设计和工艺上要减小PCB、元器件露铜的概率;(3)组装过程要尽力减少热冲击及污染离子残留;(4)整机设计要加强温、湿度的控制;(5)机房选址应避开明显的硫污染。五、爬行腐蚀、离子迁移枝晶及CAF等的异同马里兰大学较早研究了翼型引脚器件上的爬行腐蚀,并对腐蚀机理进行了初步的探讨。与离子迁移枝晶、CAF类似,爬行腐蚀也是一个传质的过程,但三者发生的场景、生成的产物及导致的失效模式并不完全相同,具体对比如表2所示。表2
现代电子装联工艺可靠性
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)