你能说出红墨水为什么会这样流动吗试一试把你的解释写在这里

你能说出红墨水为什么会这样流动吗试一试把你的解释写在这里,第1张

热水有向上运动,冷却后从周围向下运动的自然循环方式。在冷水中的墨水仅仅依靠布朗运动来扩散,所以红墨水跟着这股水流的运动,和冷水中不一样功能不良真的是很多PCBA电子公司的痛,尤其现在的CPU几乎全都采用BGA封装,当有开机不良品从客户端退回,需要分析不良原因时,最常采用的就是红墨水测试(Red Dye Test)法了,因为红墨水测试的好处是可以让人一目了然,了解整颗BGA在哪些位置有锡球发生了裂缝(crack)问题,方便制程及研发单位快速了解可能原因与可能的应力(Stress)来源。

不过,这红墨水测试其实是一种破坏性测试,建议一定要等到所有非破坏性的可行方案都试过了,最后才做这个红墨水破坏性测试。做过红墨水测试的样品,理论上还是可以再拿去做切片(Cross-Section)做进一步的SEM(Scanning Electron Microscope)显微照相及EDX(Energy-Dispersive X-ray spectroscopy)金属元素分析,但样品毕竟已在红墨水测试时曾经过外力破坏,而且部分区域可能被红墨水或其他物质污染,也就是已非第一现场,所以后续的分析结果就会被持以保留态度。

另外,红墨水测试无法判断PCB内层是否有问题,有些不良原因可能是PCB的导通孔(via)断裂,或是内层微短路(CAF, Conductive Anodic Filament)所造成,一旦做了红墨水测试,这些现象就可能会消失或被破坏。

所以,一般比较谨慎的作法是先用电性测试的手法,尽可能找到是那几颗锡球与线路可能出现了问题,然后抽丝剥茧,一步步的排查缩小可能范围,最好还要分得出来是开路还是短路,最后直接做切片,直捣黄龙,一掷中的。

不过本人还是以红墨水试验为淮来做说明,下面是一般实验室(lab)做红墨水试验后所出的报告格式,有些实验室可能会有少许的不同,但表示方法都大同小异。

BGA红墨水锡球断裂面Type表示:

配合最上面的BGA锡球断裂面的图示,下面用颜色来代表锡球(ball)的断裂面。

Type 0 锡球无裂缝

Type 1 裂缝发生在锡球与零件焊垫底层之间。 零件焊垫与本体剥离。焊锡性良好。

Type 2 裂缝发生在锡球与零件焊垫表层之间。 零件焊垫完整,断裂在零件端焊锡面。

Type 3 裂缝发生在锡球与PCB焊垫表层之间。 PCB焊垫完整,断裂在PCB端焊锡面。

Type 4 裂缝发生在锡球与PCB焊垫底层之间。 焊垫与PCB本体剥离。焊锡性如果是Type 1 或 4 缝隙发生在焊垫底层,一般认为是应力(Stress)所造成的机率最大,而应力可能来自PCB板弯,组装制程中应力(比如说锁螺丝、针床测试),使用者弯曲产品,或使用者不小心摔落桌面或地面锁造成。虽然已经可以证明焊锡(Solderability)没有问题,但也不排除零件或PCB经过多次回焊高温洗礼后造成焊垫的Bonding-Force降低的影响,一般来说焊垫都可以在三次以内正常焊锡而不会脱落,如果PCB或BGA零件经过多次重工或不当高温,也有很大可能造成焊垫脱落的现象。

如果是Type 2 或 3 缝隙发生在焊垫表层,一般认为也是应力(Stress)所造成的机率最大,其次也有可能是「NWO(Non-Wet-Open)」焊锡问题所造成,正常情况下由有经验的工程师在显微镜下观察就可以判断是否与焊锡有关,断裂面如果层光滑亮面则可能为焊锡问题,如果判断不出来就必须再进一步做切片(Cross-Section),检查IMC(Intermetallic Component)的生成状况以做判断,如果是ENIG的版子,可能还得打EDX看是否有「黑垫(Black pad)」现象,不过如果是黑垫也不应该只有BGA有问题,其他零件多多少少也会出现问题才对?仅供参考

本文摘自

Streiner DL.Maintaining standards: differences between the standard deviation and standarderror, and when to use each. Can J Psychiatry 199641: 498–502.

标准差,缩写为S.D., SD, 或者 s (就是为了把人给弄晕?),是描述数据点在均值(mean)周围聚集程度的指标。

如果把单个数据点称为“ X i ,” 因此 “ X 1 ” 是第一个值,“ X 2 ” 是第二个值,以此类推。均值称为“ M ”。初看上去Σ( X i - M )就可以作为描述数据点散布情况的指标,也就是把每个 X i 与 M 的偏差求和。换句话讲,是(单个数据点—数据点的平均)的总和。

看上去挺有逻辑性的,但是它有两个缺点。

第一个困难是:上述定义的结果永远是0。根据定义,高出均值的和永远等于低于均值的和,因此它们相互抵消。可以取差值的绝对值来解决(也就是说,忽略负值的符号),但是由于各种神秘兮兮的原因,统计学家不喜欢绝对值。另外一个剔除负号的方法是取平方,因为任何数的平方肯定是正的。所以,我们就有Σ( X i - M ) 2 。

另外一个问题是当我们增加数据点后此等式的结果会随之增大。比如我们手头有25个值的样本,根据前面公式计算出SD是10。如果再加25个一模一样的样本,直觉上50个大样本的数据点分布情况应该不变。但是我们的公式会产生更大的SD值。好在我们可以通过除以数据点数量 N 来弥补这个漏洞。所以等式就变成Σ( X i - M ) 2 / N .

根据墨菲定律,我们解决了两个问题,就会随之产生两个新问题。

第一个问题(或者我们应该称为第三个问题,这样能与前面的相衔接)是用平方表达偏差。假设我们测量自闭症儿童的IQ。也许会发现IQ均值是75, 散布程度是100 个IQ点平方。这IQ点平方又是什么东西?不过这容易处理:用结果的平方根替代,这样结果就与原来的测量单位一致。所以上面的例子中的散布程度就是10个IQ点,变得更加容易理解。

最后一个问题是目前的公式是一个有偏估计,也就是说,结果总是高于或者低于真实的值。解释稍微有点复杂,先要绕个弯。在多数情况下,我们做研究的时候,更感兴趣样本来自的总体(population)。比如,我们探查有年轻男性精神分裂症患者的家庭中的外现情绪(expressed emotion,EE)水平时,我们的兴趣点是所有满足此条件的家庭(总体),而不单单是哪些受研究的家庭。我们的工作便是从样本中估计出总体的均值(mean)和SD。因为研究使用的只是样本,所以这些估计会与总体的值未知程度的偏差。理想情况下,计算SD的时候我们应当知道每个家庭的分值(score)偏离总体均值的程度,但是我们手头只有样本的均值。

根据定义,分值样本偏离样本均值的程度要小于偏离其他值,因此使用样本均值减去分值得到的结果总是比用总体均值(还不知道)减去分值要小,公式产生的结果也就偏小(当然N很大的时候,这个偏差就可以忽略)。为了纠正这个问题,我们会用N-1除,而不是N。总之,最后我们得到了修正的标准差的(估计)公式(称为样本标准差):

顺带一下,不要直接使用此公式计算SD,会产生很多舍入误差(rounding error)。统计学书一般会提供另外一个等同的公式,能获得更加精确的值。

现在我们完成了所有推导工作,这意味着什么呢?

假设数据是正态分布的,一旦知道了均值和SD,我们便知道了分值分布的所有情况。对于任一个正态分布,大概2/3(精确的是68.2%)的分值会落在均值-1 SD和均值+1 SD之间,95.4%的在均值-2 SD 和均值+2 SD之间。比如,大部分研究生或者职业院校的入学考试(GRE,MCAT,LSAT和其他折磨人的手段)的分数分布(正态)就设计成均值500,SD 100。这意味68%的人得分在400到600之间,略超过95%的人在300到700之间。使用正态曲线的概率表,我们就能准确指出低于或者高于某个分数的比例是多少。相反的,如果我们想让5%的人淘汰掉,如果知道当年测试的均值和SD,依靠概率表,我们就能准确划出最低分数线。

总结一下,SD告诉我们分值围绕均值的分布情况。现在我们转向标准误差(standard error)。

前面我提到过大部分研究的目的是估计某个总体(population)的参数,比如均值和SD(标准方差)。一旦有了估计值,另外一个问题随之而来:这个估计的精确程度如何?这问题看上去无解。我们实际上不知道确切的总体参数值,所以怎么能评价估计值的接近程度呢?挺符合逻辑的推理。但是以前的统计学家们没有被吓倒,我们也不会。我们可以求助于概率:(问题转化成)真实总体均值处于某个范围内的概率有多大?(格言:统计意味着你不需要把话给说绝了。)

回答这个疑问的一种方法重复研究(实验)几百次,获得很多均值估计。然后取这些均值估计的均值,同时也得出它的标准方差(估计)。然后用前面提到的概率表,我们可估计出一个范围,包括90%或者95%的这些均值估计。如果每个样本是随机的,我们就可以安心地说真实的(总体)均值90%或者95%会落在这个范围内。我们给这些均值估计的标准差取一个新名字:均值的标准误差(the standard error of the mean),缩写是SEM,或者,如果不存在混淆,直接用 SE 代表。

但是首先得处理一个小纰漏:重复研究(实验)几百次。现今做一次研究已经很困难了,不要说几百次了(即使你能花费整个余生来做这些实验)。好在一向给力的统计学家们已经想出了基于单项研究(实验)确定 SE 的方法。让我们先从直观的角度来讲:是哪些因素影响了我们对估计精确性的判断?一个明显的因素是研究的规模。样本规模 N 越大,反常数据对结果的影响就越小,我们的估计就越接近总体的均值。所以, N 应该出现在计算 SE 公式的分母中:因为 N 越大, SE 越小。类似的,第二因素是:数据的波动越小,我们越相信均值估计能精确反映它们。所以, SD 应该出现在计算公式的分子上: SD 越大, SE 越大。因此我们得出以下公式:

(为什么不是 N ? 因为实际是我们是在用 N 除方差 SD 2 ,我们实际不想再用平方值,所以就又采用平方根了。)

所以, SD 实际上反映的是数据点的波动情况,而 SE 则是均值的波动情况。

前面一节,针对 SE ,我们提到了某个值范围。我们有95%或者99%的信心认为真实值就处在当中。我们称这个值范围为“置信区间”,缩写是CI。让我们看看它是如何计算的。看正态分布表,你会发现95%的区域处在-1.96 SD 和+1.96 SD 之间。回顾到前面的GRE和MCAT的例子,分数均值是500, SD是100,这样95%的分数处在304和696之间。如何得到这两个值呢?首先,我们把 S D乘上1.96,然后从均值中减去这部分,便得到下限304。如果加到均值上我们便得到上限696。CI也是这样计算的,不同的地方是我们用 SE 替代 SD 。所以计算95%的CI的公式是: 95%CI= 均值± ( 1.96 x SE )。

好了,现在我们有 SD , SE 和CI。问题也随之而来:什么时候用?选择哪个指标呢?很明显,当我们描述研究结果时, SD 是必须报告的。根据 SD 和样本大小,读者很快就能获知 SE 和任意的 CI 。如果我们再添加上SE和CI,是不是有重复之嫌?回答是:“YES”和“NO”兼有。

本质上,我们是想告之读者通常数据在不同样本上是存在波动的。某一次研究上获得的数据不会与另外一次重复研究的结果一模一样。我们想告之的是期望的差异到底有多大:可能波动存在,但是没有大到会修改结论,或者波动足够大,下次重复研究可能会得出相反的结论。

某种程度上来讲,这就是检验的显著程度,P level 越低,结果的偶然性就越低,下次能重复出类似结果的可能性越高。但是显著性检验,通常是黑白分明的:结果要么是显著的,要么不是。如果两个实验组的均值差别只是勉强通过了P <0.05的红线,也经常被当成一个很稳定的结果。如果我们在图表中加上CI,读者就很容易确定样本和样本间的数据波动会有多大,但是我们选择哪个CI呢?

我们会在图表上加上error bar(误差条,很难听),通常等同于1个 SE 。好处是不用选择SE或者CI了(它们指向的是一样的东西),也无过多的计算。不幸的这种方法传递了很少有用信息。一个error bar (-1 SE,+1 SE )等同于68%的CI;代表我们有68%的信心真的均值(或者2个实验组的均值的差别)会落在这个范围内。糟糕的是,我们习惯用95%,99% 而不是68%。所以让忘记加上 SE 吧,传递的信息量太少了,它的主要用途是计算CI。

那么把error bar加长吧,用2个 SE 如何?这好像有点意思,2是1.96的不错估计。有两方面的好处。首先这个方法能显示95%的CI,比68%更有意义。其次能让我们用眼睛检验差别的显著性(至少在2个实验组的情况下是如此)。如果下面bar的顶部和上面bar的底部没有重叠,两个实验组的差异必定是显著的(5%的显著水平)。因此我们会说,这2个组间存在显著差别。如果我们做t-test,结果会验证这个发现。这种方法对超过2个组的情况就不那么精确了。因为需要多次比较(比如,组1和组2,组2和组3,组1和组3),但是至少能给出差别的粗略指示。在表格中展示CI的时候,你应该给出确切的数值(乘以1.96而不是2)。

SD 反映的是数据点围绕均值的分布状况,是数据报告中必须有的指标。 SE 则反映了均值波动的情况,是研究重复多次后,期望得到的差异程度。 SE 自身不传递很多有用的信息,主要功能是计算95%和99%的CI。 CI是显著性检验的补充,反映的是真实的均值或者均值差别的范围。

一些期刊已把显著性检验抛弃了,CI取而代之。这可能走过头了。因为这两种方法各有优点,也均会被误用。比如,一项小样本研究可能发现控制组和实验组间的差别显著(0.05的显著水平)。如果在结果展示加上CI,读者会很容易看到CI十分宽,说明对差别的估计是很粗糙的。与之相反,大量鼓吹的被二手烟影响的人数,实际上不是一个均值估计。最好的估计是0,它有很宽的CI,报道的却只是CI的上限。

总之, SD 、显著性检验,95%或者99% 的CI,均应该加在报告中 ,有利于读者理解研究结果。它们均有信息量,能相互补充,而不是替代。相反,“ 裸”的 SE 的并不能告诉我们什么信息**,多占据了一些篇幅和空间而已。

https://blog.csdn.net/zzminer/article/details/8939244?utm_medium=distribute.pc_relevant.none-task-blog-2%7Edefault%7EBlogCommendFromMachineLearnPai2%7Edefault-1.control&dist_request_id=1331302.267.16182420970660717&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2%7Edefault%7EBlogCommendFromMachineLearnPai2%7Edefault-1.control

( 1) 合成样品的收缩率

成型试样经游标卡尺测量,获得 12 个样品的平均高度为 42. 3 mm,平均直径为18. 1 mm,平均密度为 1. 67 g / cm3,不同配比试样之间的差异很小,几乎可以忽略不计。

将成型试样烧成前后的高度和直径用游标卡尺分别测量并加以记录,经计算得出烧成试样的纵向、横向收缩率,见表 6. 8。

总体而言,烧结试样的收缩率随温度的增加而增加,纵向收缩率明显高于横向收缩率随恒温时间延长,试样的收缩率有增大的趋势。A 系列样品的收缩率高于 B、C 系列,B、C 系列之间收缩率差异不大,说明未经酸洗的粉煤灰由于杂质含量较高,烧结时产生的液相含量较高,使之合成样品的收缩率增加。B、C 系列横向收缩率与工业用堇青石的收缩率 6% ± 接近。

试样收缩的主要原因是粉煤灰颗粒和粉煤灰中的空心微珠在高温下熔融而造成,在细磨 5 h 后的样品中仍能发现为数众多的微珠存在,其直径在数微米之下,即使增加细磨时间也无济于事,堇青石的形成和重结晶只能部分抵消这种作用。所以,直接利用粉煤灰制备烧结堇青石制品是不切实际的,因为在生产过程中如此大的收缩率,很难控制烧结制品的外观尺寸达到设计要求。以粉煤灰为原料制备耐火或陶瓷制品时,只能用粉煤灰的烧结料作为它们的制备原料,经过二次烧结其收缩量才会大大降低。所以本次以高铝粉煤灰合成的堇青石也只作为耐火材料或陶瓷材料的原料使用,并非直接能够制成耐火或陶瓷制品,这方面应当引起我们足够的重视。

( 2) 合成样品的物理性能

利用排水驱替法 ( 阿基米得法) 测得合成堇青石样品的物理性能,见表 6. 9。

表 6. 8 烧成堇青石试样的收缩率

表 6. 9 烧成堇青石试样的物理性能

从表 6. 9 中可以看出,A 系列样品的吸水率、显气孔率明显低于 B、C 系列样品,A系列样品的表观体积密度也略低于 B、C 系列样品。从 A→B→C 合成堇青石样品的吸水率变化为 0. 32%→8. 26% →6. 55%,显气孔率变化为 0. 66% →19. 74% →16. 11%,平均密度变化为 2. 09→2. 36→2. 41 g/cm3。B 系列样品吸水率和显气孔率较大,与该试样配料中酸洗粉煤灰含量略高于 C 系列有关。

就密度变化而言,C 系列样品最高。同一系列样品,随温度增高和恒温时间延长,合成样品的吸水率和显气孔率有降低的趋势,降低幅度较大样品密度尽管也有降低趋势,但降低的幅度较小,这可能与烧结样品中堇青石晶体的增生长大造成闭气孔增多有关恒温时间对样品密度几乎没有影响。堇青石的理论密度为2. 48 g/cm3,天然堇青石的密度可达 2. 53 ~2. 78 g/cm3,工业用堇青石密度一般在 2. 35 g /cm3左右。此次实验获得的堇青石试样密度,可与 Goren 等 ( 2006) 采用天然原料合成的堇青石样品相媲美 ( 1350 ℃ ×1 h为 2. 32 g / cm3,1400 × 1 h 为 2. 47 g /cm3) 。

( 3) 合成样品的力学性能

将烧结后的圆柱形试样两端切割为平整的平面,用 RMT-150B 型岩石力学多功能试验机进行试样的单轴压缩破坏试验,得到试样的应力-应变全过程曲线,获得烧结试样的单轴抗压强度参数。图 6. 13 为部分试样的单轴抗压强度测试结果。

图 6. 13 合成堇青石样品的单轴抗压强度

测得试样的单轴抗压强度离散性很大,变化范围为 60 ~ 284 MPa,平均抗压强度为139 MPa。抗压强度从小到大排列顺序为 A1→B1→C2→B4→A2 ( 表 6. 10) ,它们随烧结温度和恒温时间的变化规律不明显。个别试样与 Kobayashi 等 ( 2000) 采用超细粉高岭石和氢氧化镁在 1350 ℃ ×1 h 烧结合成堇青石的破裂压力 175 MPa 相媲美。

表 6. 10 烧成堇青石试样的单轴抗压强度

( 4) 合成样品的物相分析

采用德国 Bruker AXS 公司生产的 D8 ADVANCE X-射线衍射仪,对烧结合成堇青石样品进行物相分析,获得烧结试样的矿物种类和含量,以及试样中玻璃相的数量,有助于优化实验参数。不同物相的多晶衍射谱,在衍射峰的数量、2θ 位置及强度上总有一些不同,具有物相特征。几个物相的混合物的衍射谱,是各物相多晶衍射谱的权重叠加,因而将混合物的衍射谱与各种单一物相的标准衍射谱进行匹配,可以解析出混合物的各组成相。

从 XRD 曲线 ( 图 6. 14) 可以看出,A 系列样品的物相组成主要是堇青石,同时还含有极少量的钙长石和尖晶石XRD 基线呈水平,表明几乎不含玻璃相。也就是说,样品中的矿物种类单一,几乎全部由堇青石矿物组成。

图 6. 14 A 系列堇青石样品在不同烧结温度下的 XRD 图谱C—堇青石A—钙长石S—尖晶石

根据烧结温度和晶格间距 d 值判定 ( JCPDS 卡: ,所有堇青石均为 α-堇青石,即印度石。图 6. 14 中显示,1350℃ 与 1370℃ 烧结温度下获得的堇青石样品物相组成相同,但 1370℃ 下烧结堇青石的峰值强度明显增强,恒温时间由 2 h 增加到 3 h 对合成堇青石影响不大。为进一步说明样品的物相组成特点,将单个样品的 XRD 曲线示于图 6. 15,以揭示出物相精确的衍射峰位置。

C 系列样品的 XRD 曲线见图 6. 16,图中显示主晶相为堇青石,同时含有极其少量的次晶相莫来石和尖晶石。与 A 系列相比,钙长石消失,出现少量的莫来石晶相尖晶石结晶强度明显降低。C 系列中,1350℃与 1370℃烧结堇青石衍射峰强度似乎没有明显变化,恒温时间对其影响也不大。图 6. 17 给出了单个样品详细晶相的 XRD 曲线。

对比 A 与 C 系列 XRD 分析结果可以看出,尽管两个系列样品中的主晶相均为堇青石,玻璃相含量几乎为零 ( XRD 基线为一水平线) ,但在次晶相方面有所区别。A 系列中出现钙长石与原始粉煤灰中 CaO 含量较高 ( 4. 22%) 有关,虽然由于滑石粉的添加减少了配料中 CaO 的相对百分含量,即从 4. 22%降至 2. 84%,但与经 20%盐酸处理粉煤灰相比依然较高。盐酸处理后粉煤灰 CaO 含量为 0. 95%,经添加滑石粉进行配料后使其相对含量降至 0. 76%,所以在 C 系列烧结样品中,未发见钙长石存在。C 系列中出现的次晶相莫来石,在 A 系列中未发现。

图 6. 15 1370℃ ×3 h 烧结条件下获得的 A4 样品的 XRD 图谱

图 6. 16 C 系列堇青石样品在不同烧结温度下的 XRD 图谱C—堇青石M—莫来石S—尖晶石

图 6. 17 1350℃ ×3 h 烧结条件下获得的 C2 样品的 XRD 图谱

对比 A、C 系列样品还可以发现,尖晶石 ( MgO·Al2O3) 在 C 系列中的衍射峰强度明显低于 A 系列,说明配料纯度对合成堇青石样品纯度有重要影响。

CaO 的存在对烧结合成堇青石原料的物相组成是至关重要的。尽管 Sundar 等 ( 1993)的研究指出,钙离子替代镁离子可使堇青石中的氧化钙含量达到 4. 73%,即在 Mg2 - xCaxAl4Si5O18系统中 x 可达 0. 5。Sundar 采用的方法是溶胶-凝胶法合成堇青石,获得了 x 达0. 5 的单晶相堇青石,并且证实钙离子的替代可以大大降低堇青石热膨胀的各向异性,这一结果与合成堇青石的方法有关,因为溶胶-凝胶法合成堇青石其原料纯度更高,颗粒更加细小均匀。Chen ( 2008) 在烧结堇青石玻璃陶瓷时,用 3% CaO 替代 MgO 仅出现堇青石相5%替代时出现主晶相堇青石和次晶相钙长石,此时制备的堇青石陶瓷密度最佳10% 替代则堇青石的 XRD 强度明显降低,取而代之的是钙长石的 XRD 强度明显增加。

钙长石 ( Anorthite) 是斜长石中的一个端元组分,属三斜晶系,可细分为高温体心钙长石 ( Ⅰ—钙长石,An 组分 70% ~ 90%) 和低温原始钙长石 ( P—钙长石,An 组分90% ~ 100% ) ,二者间转变温度为 200 ~ 300℃ 。根据 Ab—An 系列的成分-温度图 ( 图6. 18) 可以判定,烧结堇青石中的钙长石应属于体心钙长石,它是在配料烧结过程中二次形成的矿物。图 6. 18 中 Pe、ВФ 和 Hu 分别表示晕长石连生区、沃基尔德连生区和胡特恩罗契尔连生区。

图 6. 18 Ab—An 系列的成分-温度图( 据王濮等,1984)

图 6. 19 给出了钠长石 ( Ab) —钙长石 ( An) 在 1100 ~ 1600℃ 温度下的另一相图,显示了 Ab—An 系列斜长石不同百分比组合在不同温度下的相态。配料中 Na2O 的含量只有 0. 07%,而 CaO 含量为 2. 84%,1350 ~1370℃烧结后 XRD 分析几乎全部为结晶相,与Ab—An 系高温相图中指示的全固相区域相一致。

在 CaO-SiO2-Al2O3相图中 ( 图 6. 20) ,钙长石基本上处于三元组分图的中心区域,随着 CaO 含量的增加,可能会出现钙黄长石。尽管 Sundar 等 ( 1993) 的研究指出,钙离子替代镁离子可使堇青石中的氧化钙含量达到 4. 73%,这也许是钙离子替代镁离子的极限值,需要相应的转化条件。本次实验配料中 CaO 含量为 2. 84%,而烧结试样中已经有钙长石形成,说明钙离子替代镁离子的数量有限。

莫来石是斜方晶系,晶体呈平行 c 轴延伸的针状或横断面为四边形的柱状。高铝粉煤灰中莫来石的原始含量高达 35. 6%,但在 A 系列烧结样品中未发现有莫来石晶相,说明MgO 的加入破坏了配料中已经存在的莫来石。

图 6. 19 Ab—An 系高温相图

图 6. 20 CaO-SiO2-Al2O3相图( 转引自 Mollah 等,1999)

根据林彬萌等 ( 1989) 的研究成果,含有 1. 5%MgO 的试样,在 1500℃下加热 2 ~10 h不影响莫来石的结构,当 MgO 增加到 2%,并延长保温时间时,会使莫来石的数量减少加入 18. 6%MgO 时,莫来石完全分解CaO 的存在也是莫来石数量减少的一个因素,试样中加入 1. 12%的 CaO 能使莫来石分解 10%,当加入 11. 5% CaO 时,莫来石完全分解。由此可见,高温下这两种因素均促进了配料中莫来石相的分解,进而在 MgO 存在的作用下,使配料中的化学成分逐步转化为堇青石结晶相。

C 系列中有少量的莫来石相出现,可能有两种来源: 一是配料中原始粉煤灰中莫来石相的残余物二是堇青石形成过程中伴生的莫来石。要详细区分这两种莫来石的来源,需要测定莫来石的晶格常数,即 a、b 和 c 的值。莫来石的晶格常数随莫来石中 Al2O3含量的不同而变化,也就是说,莫来石晶格常数随 Al2O3的增加,a 值呈线性增加,c值略有增加,而 b 值有下降趋势 ( 图6. 21) 。

图 6. 21 莫来石晶格常数随 Al2O3含量的变化( 据 Fischer 等,2005)

高铝粉煤灰特性及其在合成莫来石和堇青石中的应用

Gomse 等 ( 2000) 对法国东部一家火电厂粉煤灰采用 XRD 和 NMR ( 核磁共振) 等多种研究手段得到粉煤灰中莫来石的化学式为 Al4. 70Si1. 30O9. 65( 对应 x = 0. 35,Al2O3含量为75. 5% ) ,其中 Al2O3含量略高出经典的莫来石化学式 Al4. 5Si1. 5O9. 75( 对应 x = 0. 25,Al2O3含量为71. 8%) ,介于烧结3∶2 莫来石和电熔2∶1 莫来石之间。粉煤灰形成过程中的瞬时冷却使得莫来石并不能充分结晶和均一化,导致了莫来石在结构和成分上的差异。若测定了莫来石中的 Al2O3含量和晶格常数,就可以区分合成堇青石样品中的莫来石来源。本次实验中 C 系列样品中的莫来石含量甚微,未能对其做进一步的研究。

尖晶石 ( MgO·Al2O3) 也是合成堇青石实验过程中的伴生相,总体含量甚微,且 C系列中含量略低于 A 系列。尖晶石属等轴晶系,常呈八面体晶形,有时与菱形十二面体和立方体成聚形,常依 ( 111) 为双晶面和接合面构成双晶,这种双晶律称为尖晶石律。尖晶石有多种存在形式,常见的有镁尖晶石、铁尖晶石和锌尖晶石,这是因为尖晶石的类质同像非常普遍,二价阳离子 Mg2 +经常有 Fe2 +和 Zn2 +等的类质同像替代。通常所谓的尖晶石 ( Spinel) 即指镁尖晶石 ( MgAl2O4) ,理论上的化学组成为 28. 2% MgO 和 71. 8% Al2O3。

MgO 和 Al2O3间的固相反应,在相当低的温度便可进行,Hlavac ( 1961) 在 950 ~1300℃ 间研究 Al2O3+ MgO 的反应动力学,解释 γ - Al2O3具有较大的化学活性 ( 活化能:α - Al2O3为 107 kJ/molγ - Al2O3为 342. 76 kJ/mol) 促进合成反应。引证 Wagner 给出的该反应阳离子互扩散过程如图 6. 22 所示。该反应模型可用实验证实,但不能对实际反应速率常数做出完整计算。

粉煤灰中 8. 4%的刚玉相在烧结堇青石样品中也未发现,说明 MgO 的加入使得刚玉( α - Al2O3) 消失,继而经过镁、铝离子间的扩散形成尖晶石,有硅同时参与下也可形成堇青石。

据研究 ( 倪文等,1995,1996,1997) ,高温型 α - 堇青石结构中存在两类不同的四面体,即位于六圆环内的四面体和起连接作用的四面体。Meger 等 ( 1977) 认为,起连接作用的四面体明显大于六圆环内的四面体,因此较大的铝原子将有较大的几率进入这些较大的四面体中 ( 图 6. 23 ( a) ) 。

图 6. 22 MgO-Al2O3系离子扩散和相界反应 Wagner 模型

图 6. 23 典型 α - 堇青石 ( a) 与典型 β - 堇青石 ( b) 的结构比较( 据倪文等,1995)

对于低温变体 β - 堇青石来说,Gibbs ( 1966) 认为在六圆环中有 2 个体积较大的四面体易于被铝所充填。因此,在理想的堇青石结构中,六圆环中含有 2 个 Al-O 四面体,而起连接作用的四面体中有 1/3 被硅所占据。在整个三维空间骨架中,除了六圆环中的两对富硅四面体共用一个氧原子外,其他富铝四面体与富硅四面体严格有序地相间排列( 图 6. 23 ( b) ) 。

μ-堇青石是堇青石玻璃体在较低温度下 ( <1150℃) 发生去玻化作用时转变成 α - 堇青石或 β - 堇青石的中间产物,其结构为高温石英型结构,并能与高温石英形成连续的固熔体。

堇青石结构的基本单元是由 6 个 ( Si,Al) O4四面体连接而形成的六圆环。这些六圆环沿 c 轴平行排列而形成 c 轴的通道。由于通道内具有较大的空间,一些较小的分子,如 H2O、CO2等和电价补偿离子,如 K+、Na+、Li+、Cs+、Ca2 +、Ba2 +等均可进入通道,而不对堇青石的基本结构产生影响。这些分子或离子统称为通道粒子。虽然大多数通道粒子不影响堇青石的基本结构,但某些较大的粒子会对堇青石晶格的畸变产生影响,从而影响堇青石多型的稳定性。

堇青石有复杂的同质多像存在。在堇青石晶体中,还存在结构的歪曲使其对称度降低,都城秋穗 ( 1957) 认为,堇青石歪曲程度可由 X 射线粉末图的 ( 511) 、 ( 421) 和( 131) 的 3 个峰的分离程度来估 算。它 们 在 未 受 歪 曲 的 六 方 印 度 石中 重 合成 单 峰

日本学者都城秋穗在研究堇青石结晶情况时,提出了歪曲指数 ( Δ) 的概念:

高铝粉煤灰特性及其在合成莫来石和堇青石中的应用

他发现堇青石歪曲指数的最高值没有超过 0. 31,他把具有最高歪曲指数的堇青石( 0. 29 ~ 0. 31) 称为过歪曲的堇青石0 <Δ <0. 29 的堇青石称为次歪曲的堇青石Δ = 0的堇青石称为印度石。歪曲指数与堇青石成分无关,而与堇青石的形成温度有关。Δ = 0的堇青石在十分高温情况下是稳定的,Δ = 0. 29 ~ 0. 31 的过歪曲堇青石在中温下是稳定的,次歪曲的堇青石介于二者之间。它又可以分为高次歪曲堇青石和低次歪曲堇青石,前者出现于安山岩中,后者广泛分布于变质岩、伟晶岩和石英脉中。由此可见,堇青石的歪曲指数可用作地质温度计 ( 叶大年等,1984) 。实际上,在人工烧结合成的堇青石中,堇青石的歪曲指数可以用来指示堇青石结晶时的热状态。

堇青石结构上的歪曲可能和硅、铝在 Si5AlO18环中的分布有序和无序有关,所以歪曲指数可以作为堇青石有序—无序的尺度。

在本次合成堇青石实验中,查阅 JCPDS 卡,堇青石 XRD 图谱上的 ( 511) 、 ( 421) 和 ( 131) 的 3个峰的位置在 2θ = 28° ~ 30°之间,对应 d 值分别为3. 047、3. 036 和 3. 018 ( 图 6. 24 ) , 从本 次 试样XRD 图谱上可以看出,3 个峰完全重叠 ( 见图 6. 14至图 6. 17) ,说明试样中的堇青石均为印度石,即高温 α - 堇青石。

图 6. 24 各类堇青石在 2θ =28° ~30°时的衍射线 ( Cu,Kα) 特征( 据叶大年等,1984)

( 5) 合成样品的 SEM 观察

将烧结堇青石试样的新鲜断裂面放入真空镀膜仪中,镀 30s 铂金后置入 SEM 下观察,低倍数下可以发现烧结试样一般具有不等数量的孔隙结构,多数试样的孔隙结构呈不规则状 ( 图 6. 25a) 仅在 A4 试样( 软化坍塌) 中发现数量众多、大小不一的气泡状孔隙 ( 图 6. 25b) 。

高倍数下观察,试样中堇青石晶体发育相当完好,特别是在孔隙空间中,这是因为孔隙的存在为晶体增生提供了良好的发育空间 ( 图 6. 26) 。堇青石晶形一般呈短柱状,长径比多在 1. 5 ~2. 0 之间,横断面为六边形或近似圆形,并可见完好的六方柱状晶体。莫来石的晶体一般呈针状或长柱状,横断面呈四边形,这一特征可与堇青石晶形相区别。钙长石为平行双面晶类,一般沿 ( 010) 呈假六方板状,有时可见聚片双晶。尖晶石基本上均呈八面体晶形,但也能够发现复合尖晶石形成的聚形,易于识别。图 6. 26 为各试样 SEM 下的晶体形态,除特别注明外均为堇青石晶体。

图 6. 25 烧结堇青石试样的显微结构

根据高振昕等 ( 2002) 的研究,在合成莫来石-堇青石样品中还可能存在极其少量的呈六方片状的六铝酸钙 ( CA6) 晶体,它属于六方晶系。CA6通常在 CaO-Al2O3或 CaO-Al2O3-SiO2系中存在,有人认为 CA6是从含有 1% ~2% CaO 的铝土矿熔融刚玉磨料中结晶而来。高振昕 ( 1982) 在煅烧铝土矿的钙质熔洞中发现了结晶完好的自形 CA6,并做了化学分析、显微镜观察、XRD 和 SEM 观察,指出铝土矿高温煅烧时,其中所含的方解石同水铝石 ( 刚玉) 反应生成 CA6,认为其析晶环境多为液相。

本次实验尽管在 XRD 上未见其衍射峰,但在个别样品中的确发现有极其少量结晶完好的六方薄片晶体,由于含量极少,而且其晶形与钠长石的六方片状晶体相似,所以不易详细区分。实际上,若要加以区分的话,可以利用晶体形貌和化学成分加以判断,附以 EDX 分析结果即可。利用 SEM-EDX 分析可以确定试样中的微量矿物,以弥补 XRD 分析的不足。

样品中少量存在的浑圆粒状和不规则粒状体一般属于 RO 相,这是由于配料中所含杂质氧化物成分造成的。

B 系列试样在 SEM 下观察,其结构相对松散,多见不规则气孔。堇青石结晶相依然存在,晶体发育程度不如 C 系列,可以见到晶体粗大的莫来石存在 ( 图 6. 27) 另外,在B 系列中也发现有尖晶石相存在。因晶相发育不如 A 和 C 系列样品,所以没有对其进行XRD 研究,仅进行了 SEM 观察,但从试样物理性能和抗压强度指标看,物相组成与 A 和C 系列差异不大。

从不同配料固相反应烧结合成堇青石的 SEM 分析结果可见,晶体大小似乎没有特别大的差异,以 5 ~10 μm 居多。1350℃和 1370℃下同一配料烧结,物相组成基本一致,晶体大小所差无几恒温时间差异对堇青石结晶也没有太大影响。物相组成主要取决于原料配比,不同配比其物相组成有所差异。B 系列与 C 系列样品相比,均采用酸洗后的粉煤灰为原料,所以 C 系列中存在的晶体在 B 系列中同样可以见到,但发育程度稍有逊色B系列中莫来石晶体个体较大,可能与配料中 Al2O3含量较高、MgO 含量较低有关。将 A与 C 系列相比,C 系列中晶体发育较好,不仅在孔隙空间见到为数众多的堇青石晶体,而且在其断裂面的任何地方均可见及,其中以 C 系列中 C1 试样最为明显。

高铝粉煤灰特性及其在合成莫来石和堇青石中的应用

高铝粉煤灰特性及其在合成莫来石和堇青石中的应用

高铝粉煤灰特性及其在合成莫来石和堇青石中的应用

高铝粉煤灰特性及其在合成莫来石和堇青石中的应用

图 6. 26 SEM 下的试样形态

图 6. 27 B 系列部分烧结试样的 SEM 图像

堇青石合成是否完全,取决于原料的比表面和烧成温度合成纯度主要取决于配料的物质组成,工艺上有较大难度。由于原料中杂质氧化物种类和数量差异,使得合成温度不同。合成原料的粒度同样影响着合成温度。另外,为降低烧结温度,或提高制品某些性能,许多研究者采用不同添加剂进行实验,得出了不同结论。如 Torres 等 ( 2005) 在进行堇青石玻璃陶瓷实验时,采用 55% SiO2,21. 5% Al2O3, ( 16. 5-x) % MgO,x% CaO,3. 8% TiO2和 2. 9% B2O3为原料,分别取 x =6. 5,4. 6 和 2. 9 进行实验,得出当 x = 4. 6时,能够在1160 ~1190℃下获得单一晶相的 α - 堇青石陶瓷,且显微硬度达到最大,晶体最为完好。

Chen ( 2008) 指出,在 MgO-Al2O3-SiO2系中,CaO 取代 MgO 在 3% 以下,900℃烧成时,主晶相为 α - 堇青石,次晶相为 μ - 堇青石10% 替代时,主晶相为钙长石,次晶相为 α - 堇青石5% 替代时,主晶相为 α - 堇青石,次晶相为钙长石,此时试样密度接近堇青石理论值的 98% ,且具有低的介电常数、低的热膨胀性和较高的抗折强度( ≥134 MPa) 。

代刚斌等 ( 2003) 研究发现,当配料中的 Al2O3含量在理论组成的 5%范围内变化时,对合成堇青石材料的显微结构和高温性能产生明显影响。其中 Al2O3与 SiO2或 Al2O3与MgO 质量比的增大有利于改善堇青石材料的显微结构和提高其高温性能。在富铝配料组成下合成的堇青石材料中,玻璃相的含量相对较低,有针状莫来石在玻璃相中析出,由针状莫来石晶体连接成的颗粒均匀地分布在堇青石相中,这种显微结构对提高材料的高温性能很有帮助。

实验过程中,如果减少滑石粉比例,可以生成莫来石和堇青石的共生组合结构,以此共生结构作结合基质添加烧结莫来石颗粒或合成堇青石颗粒,可以生产出不同相组合的制品,以适应不同温度条件的变化。工业上已有生产莫来石-堇青石系制品的实例,采用的方法有利用原位反应原理一次烧成,也有二次烧成。在 Acme 公司生产的制品基质中,就能发现莫来石与堇青石共生的形态,前者为较粗的柱状,后者为纤细的针状或纤维状,两者共生,密不可分。这种结构特征是颗粒与基质紧密结合的表征,也是确保制品具有一系列优越性的根本因素。Camerucci 等 ( 2001) 将30%莫来石与70%堇青石原料配料,制备出与硅热膨胀系数相媲美的复合材料,并证实这一莫来石含量对材料的电学特性几乎没有影响。此类实验的研究目的,是希望将莫来石 ( 高熔点) 和堇青石 ( 低热膨胀性、低介电常数) 两者的优点相结合,以制备高性能的复合材料。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/104032.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-03-10
下一篇2023-03-10

发表评论

登录后才能评论

评论列表(0条)

    保存