浙大:皮皮虾壳为原料制备分层多孔碳材料,用于对称超级电容器

浙大:皮皮虾壳为原料制备分层多孔碳材料,用于对称超级电容器,第1张

成果简介

本文,浙江大学王树荣教授团队在《ChemElectroChem》期刊 发表名为“Preparation of Nitrogen and Sulfur Co-doped and Interconnected Hierarchical Porous Biochar by Pyrolysis of Mantis Shrimp in CO2 Atmosphere for Symmetric Supercapacitors”的论文, 研究以螳螂虾壳为原料,CO2为活化剂,通过一步热解活化制备多种N、O、S自掺杂生物质碳材料(MSCs)。

通过控制热解温度来调节碳材料的物理和化学性质。在这项研究中,MSCs 材料的最大比表面积 (SSA) 和孔体积分别为484.5 m 2  g -1和0.291cm 3  g -1在 700 C 时达到。此外,在表征试验中发现,氮和硫等杂原子已成功引入碳微观结构中。 MSC-750含有高达9.46%的N和0.52%的S ,虽然SSA只有431.6m2g-1 时,6MKOH对称超级电容器在1Ag-1下的比电容在所有样品中达到最大值 144.2Fg -1,这是由于其高含量的杂原子官能团产生的赝电容。

图文导读

图1、(a)–(d) 分别为样品 MSC-600、650、700 和 750 的 SEM 图像;(e) 和 (f) MSC-700 和 MSC-750 在高倍率下的形态学图像。

图2、(a)–(b) MSC-750的TEM图像;(c)–(i) MSC-750选定区域的TEM-EDS图像。

图3、(a) MSCs的拉曼光谱和 (b)XRD图。

图4、MSC的电化学性能

图5、(a) 奈奎斯特曲线;(b) 比电容的虚部(C“,vs 频率);(c)-(f) 两个串联的硬币型超级电容器分别用于点亮白色和红色 LED。

小结

通过二氧化碳一步热解活化螳螂虾壳制备多元素共掺杂多孔生物质活性炭材料,并将其应用于对称超级电容器。这些结果表明MSC-750是一种很有前景的超级电容器电极材料,为水产品的高附加值加工利用开辟了新途径。

文献:

https://doi.org/10.1002/celc.202101151

成果简介

具有高比表面积的多孔碳纳米片已经成为超级电容器最有希望的电极材料,但是它们的高孔体积导致相对较低的密度和较差的体积电容。 本文,苏州大学Chong Chen等研究人员 在《Carbon》期刊发表名为“Scalable synthesis of strutted nitrogen doped hierarchical porous carbon nanosheets for supercapacitors with both high gravimetric and volumetric performances”的论文, 研究通过新型的D-葡萄糖酸钙爆炸技术成功地按比例合成了支撑氮掺杂的分层多孔碳纳米片(SNPCNS),该碳纳米管具有通过支撑支撑的三维非聚集结构。

调节热解温度和时间,以及D-葡萄糖酸钙和脲甲醛树脂的质量比,以优化SNPCNS的比表面积,孔体积和电容性能。经过优化的SNPCNS具有高比表面积(539 m2g -1),表面杂原子丰富(N为8.1 at。%)和高密度(1.11 g cm -3)。因此,由SNPCNS电极组装的超级电容器具有非常高的重量/体积电容,分别为286Fg-1/317Fcm-3(在6MKOH中)和355Fg-1 / 394Fcm-3(在1 MH 2中)所以4)。重要的是,实现了重离子/体积能量密度(在离子液体中)为40.5 W h kg -1 /44.9 W h L -1(在离子液体中),优于先前报道的基于碳纳米片的对称超级电容器。这项工作为大规模和低成本生产用于能量存储的高性能多孔碳纳米片提供了新的策略。

图文导读

图1。氮掺杂分层多孔碳纳米片的合成示意图。

图2。SNPCNS-1:1-800-2h的(ab)SEM图像,(ce)TEM图像,(f)AFM图像和(gi)EDX元素映射图像。

图3。(a)XPS调查,(b)SNPCNS-1:1-800-2h的C1s,(c)N1s和(d)O1s光谱。

图4。SNPCNS材料通过热膨胀和热解转化制备过程的示意图。

图5。(a)20 mV s -1时的CV曲线,(b)1 A g -1时的GCD曲线,以及(c)SNPCNS样品在6 M KOH溶液中的体积电容。(d)在6 M KOH溶液中SNPCNS-1:1-800-2h的GCD曲线。(e)SNPCNS-1:1-800-2h在1 MH 2 SO 4和6 M KOH溶液中的奈奎斯特图。(f)SNPCNS-1:1-800-2h电极的重量/体积电容与其他报道的碳电极的比较。

图6。SNPCNS-1:1-800-2h在6 M KOH和[EMIm] NTf 2电解质中的电化学性能。

小结

总之,开发了一种D-葡萄糖酸钙爆炸技术,可以轻松而可规模地合成一种支链的氮掺杂分层多孔碳材料。 SNPCNS的高产量生产和出色的电容性能使其能够在超级电容器中进行大规模应用。

文献:

https://doi.org/10.1016/j.carbon.2021.04.062

纤维是一种纤维状碳材料。它是一种强度比钢的大、密度比铝的小、比不锈钢还耐腐蚀、比耐热钢还耐高温、又能像铜那样导电,具有许多宝贵的电学、热学和力学性能的新型材料。用碳纤维与塑料制成的复合材料所做的飞机不但轻巧,而且消耗动力少,推力大,噪音小;用碳纤维制电子计算机的磁盘,能提高计算机的储存量和运算速度;用碳纤维增强塑料来制造卫星和火箭等宇宙飞行器,机械强度高,质量小,可节约大量的燃料。目前,人们还不能直接用碳或石墨来抽成碳纤维,只能采用一些含碳的有机纤维(如尼龙丝、腈纶丝、人造丝等)做原料,将有机纤维跟塑料树脂结合在一起,放在稀有气体的气氛中,在一定压强下强热炭化而成 碳纤维是纤维状的碳材料,其化学组成中含碳量在90%以上。由于碳的单质在高温下不能熔化(在3800K以上升华),而在各种溶剂中都不溶解,所以迄今无法用碳的单质来制碳纤维。 碳纤维可通过高分子有机纤维的固相碳化或低分子烃类的气相热解来制取。上前世界上产生的销售的碳纤维绝大部分都是用聚丙烯腈纤维的固相碳化制得的。其产生的步骤为A预氧化:在空气中加热,维持在200-300度数十至数百分钟。预氧化的目的为使聚丙烯腈的线型分子链转化为耐热的梯型结构,以使其在高温碳化时不熔不燃而保持纤维状态。B碳化:在惰性气氛中加热至1200-1600度,维持数分至数十分钟,就可生成产品碳纤维;所用的惰性气体可以是高纯的氮气、氩气或氦气,但一般多用高纯氮气。C石墨化:再在惰性气氛(一般为高纯氩气)加热至2000-3000度,维持数秒至数十秒钟;这样生成的碳纤维也称石墨纤维。 碳纤维有极好的纤度(纤度的表示法之一是9000米长的纤维的克数),一般仅约为19克;拉力高达300KG/MM2;还有耐高温、耐腐蚀、导电、传热、彭胀系数小等一系列优异性能。目前几乎没有其他材料像碳纤维那样具有那么多的优异性能。 目前,碳纤维主要是制成碳纤维增强塑料来应用。这种增强塑料比钢、玻璃钢更优越,用途非常广泛,如制造火箭、宇宙飞船等重要材料;制造喷气式发动机;制造耐腐蚀化工设备等。 羽毛球:现在大部分羽毛球拍杆由碳纤维制成。 【碳纤维 】 carbon fibre 含碳量高于90%的无机高分子纤维 。其中含碳量高于99%的称石墨纤维。碳纤维的轴向强度和模量高,无蠕变,耐疲劳性好,比热及导电性介于非金属和金属之间,热膨胀系数小,耐腐蚀性好,纤维的密度低,X射线透过性好。但其耐冲击性较差,容易损伤,在强酸作用下发生氧化,与金属复合时会发生金属碳化、渗碳及电化学腐蚀现象。因此,碳纤维在使用前须进行表面处理 碳纤维可分别用聚丙烯腈纤维、沥青纤维、粘胶丝或酚醛纤维经碳化制得;按状态分为长丝、短纤维和短切纤维;按力学性能分为通用型和高性能型 。通用型碳纤维强度为1000兆帕(MPa)、模量为100GPa左右。高性能型碳纤维又分为高强型(强度2000MPa、模量250GPa)和高模型(模量300GPa以上)。强度大于4000MPa的又称为超高强型;模量大于450GPa的称为超高模型。随着航天和航空工业的发展,还出现了高强高伸型碳纤维,其延伸率大于2%。用量最大的是聚丙烯腈基碳纤维。 碳纤维可加工成织物、毡、席、带、纸及其他材料。碳纤维除用作绝热保温材料外,一般不单独使用,多作为增强材料加入到树脂、金属、陶瓷、混凝土等材料中,构成复合材料。碳纤维增强的复合材料可用作飞机结构材料、电磁屏蔽除电材料、人工韧带等身体代用材料以及用于制造火箭外壳、机动船、工业机器人、汽车板簧和驱动轴等。 碳纤维 由聚丙烯腈纤维、沥青纤维或粘胶维等经氧化、炭化等过程制得的含碳量为90%以上的纤维..


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/112987.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-03-12
下一篇2023-03-12

发表评论

登录后才能评论

评论列表(0条)

    保存