某一值的离均程度。
什么是误差线?
误差线通常用于统计或科学数据,显示潜在的误差或相对于系列中每个数据标志的不确定程度。误差线可以用标准差(平均偏差)或标准误差,一般通用的是这两个。
(1)平均值±标准差(Mean±SD):
(2)平均值±标准误(Mean±SEM):
( 北大博士教你如何添加误差线 (sohu.com) )
误差线是通常用于统计或科学数据,显示潜在的误差或相对于系列中每个数据标志的不确定程度。误差线可以用 标准差 ( 平均偏差 )或 标准误差 ,一般通用的是这两个,如果是发英文文章,在caption中加以上bars donate S.D.(标准差)or S.E.(标准误差),中文文章可以不用说明。二 两种误差区别做误差线的话,标准差(std. deviation)和标准误(std.error)都可以,两者的侧重点不一样,一般用标准差(std. deviation)。
tips:两者区别
①概念不同;标准差是离均差平方和平均后的方根,标准误差定义为各测量值误差的平方和的平均值的平方根;
②用途不同;标准差与均数结合估计参考值范围,计算变异系数,计算标准误等。标准误用于估计参数的可信区间,进行假设检验等;
③它们与样本含量的关系不同: 当样本含量 n 足够大时,标准差趋向稳定;而标准误随n的增大而减小,甚至趋于0 。
(来自百度)
误差线用于指明度量中的估计误差;换而言之,误差线指明值中的不确定性。
在 Spotfire 中,可以在条形图、折线图和散点图中使用误差线。如果您可以通过 TIBCO Spotfire Business Author 许可证访问编写模式,则可以添加误差线;但如果分析是在 TIBCO Spotfire Professional 中创建的,则其中的图表可能已添加了误差线。条形图和折线图可以显示垂直误差。散点图可以显示垂直误差和水平误差。下图呈现了散点图标记上可能显示的四种误差。但是,上限误差和下限误差是指基础数据。这意味着如果您在图表中使用反转刻度,或更改条形图中条形的方向,那么误差线也将分别反转或更改方向。例如,对于使用反转 Y 轴的散点图,上限垂直误差将显示在标记下方,而不是标记上方。对于具有水平条形和非反转刻度的条形图,水平上限误差将显示在条形的右侧。
您可以选择仅显示其中一个误差线,或显示任意几个误差线。
误差线的长度表明值的不确定性。例如,对于平均值,长误差线表示对其计算平均值的集中度较低,因此平均值不确定。相反,短误差线表示值的集中度高,因此平均值更加确定。
在 Spotfire 中设置误差线的不同方法有两种。对于聚合值,您可以使用某一个现有度量值,例如 标准误差 或 标准偏差 。然后将在 Spotfire 中计算误差线的长度。在以下示例中,条形图显示了一年中每个月的平均销售额。统计测量标准误差用于计算上限误差线的长度。此图中未定义任何下限误差线。
定义误差线的另一种方法是使用现有数据表列中的值。例如,如下表所示,您可能拥有已计算平均值和误差值的数据表。然后,您可以使用这些列来设置误差线。在下面的散点图中,Y 轴表示“平均值”列,上限误差和下限误差分别表示“上限误差”和“下限误差”两列。
默认情况下,误差线相对于图表中的标记位置绘制,但对于某些度量值,这可能不是您要显示的内容。在这些情况下,自定义表达式可能很有帮助。
例如,如果标记表示聚合值(例如平均销售额),您可能希望显示最大值和最小值作为误差线。但是,如果您为下限误差选择度量值“最小值”,为上限误差选择度量值“最大值”,则误差线将不会显示最小值和最大值,因为误差线相对于标记位置显示。与此相反,上限误差会显示平均值加最大值,下限误差会显示平均值减最小值。要显示绝对最小值和绝对最大值,您需要使用自定义表达式。在这种情况下,上限误差的自定义表达式应为 Max([Sales])-Avg([Sales]),下限误差的自定义表达式应为 Avg([Sales])- Min([Sales])。
( 误差线 (tibco.com)
误差线并没有严格的定义,所以你需要看作图的作者是如何定义上下限的,也许是均值的标准差,也许是整个样本的标准差,也许是1倍,也许是1.96倍。总之,它们都是某种置信区间,要小心的是它到底是谁的置信区间。
假如实验设计了重复(至少3次以上),那么统计数据肯定需要以平均值 +/- 标准误差或者标准偏差表示
使用误差线要注明种类
要注明样本数n
误差线与显著性只用在独立重复实验上,代表性的实验结果不应该包含误差线与P值,因为这相当于n=1
推断性实验的误差线最好使用标准误或置信区间,对于n为3的实验,可直接列出3次的结果,不标注误差线
95%置信区间表示有95%信心里面有总体的均值,n为3时,标准误的4倍为这个区间
n为3,两倍标准误不重复覆盖,P <0.05, 刚好覆盖,P接近0.05;n大于10,间距1倍标准误,P接近0.05,两倍就是0.01
置信范围表示误差线时,n为3,重叠一臂,P为0.05;重叠半臂,P为0.01
同一组内的重复实验,标准误与置信区间不能用来表示组内差异
科学网—简析条形图(bar plot)上的误差线 - 于淼的博文 (sciencenet.cn)
基础模型的建立应尽量简洁,其中可以包括基本的 药代动力学参数 以及 个体间差异(IIV) 以及 残留误差 。
当这些参数符合模型诊断图后,基本上就可以认为达到稳定的基础结构模型。(base structural model)
一般来说,基础模型不应该包括协变量。但对于那些显著影响药代动力学参数(parameter)的协变量,在基础模型中就应该引入(比如儿童群体的体重)。
那么,该如何确定你的基础模型建立的是合适的呢?
一、通过结果表格
Stderr:
CV%:
CI置信区间:不要经过0
一、模型诊断图
几个概念:
DV:一个数据集中因变量(dependent)的数值。
PRED: 模型根据DV模拟的数值。
RES:DV与PRED的绝对差值。
WRES:加权后的DV与PRED的相对差值,一般可以认为加权后为均值为0方差为1的正态分布。一个好的模型WRES应该在-3到+3之间。
1. PRED vs. DV
图形点应该在截距为0,斜率为1的单位线的两侧对称随机分布。
像这个图就显示点在线两边的随机分布,但是线的斜率不为1,且横纵坐标不是一样的。当把坐标改为一样时就会发现预测值并不能全部覆盖真实值。预测值只覆盖了0到200,而真实值到了接近400。如下图。
2. WRES vs. PRED
当误差模型合理时,点应该在WRES=0的线上匀称分布。
3. RES vs. PRED
RES是预测值与实际值的实际差异,数据点应该在零位线的两侧均匀分布。由比例型误差模型得到的数据往往允许数据较大的点的误差大一些,这样算出来的相对误差才能一致化的最小,因此呈现出扇形。
4. WRES vs. TIME
可以了解这些残留误差是否随时间而变化。
二、随机效应的估计
选择个体间随机效应的原则是一开始先选择这个数据集可以描述的较小的参数的随机效应,然后再根据情况逐一加入其它的随机效应。即由少到多逐一添加。
比如说:如果一个数据集在谷浓度的点相对于峰浓度来得多,那么就应该先加入的是清除率的个体间差异η。
残留误差与随机效应可能会相互影响。有时候错误的残差模型的估计会导致ETA没有办法被合理估计,但是一旦残差模型设置合理后,这个ETA就可以成功估计了,以下是一些随机效应的诊断图。
几个概念:
IPRED:个体预测值,计算时包括了η。
IRES:个体预测值与实际值的差值。
IWRES:加权后的IRES。
1. IPRED vs. DV
由于考虑到了个体间差异η,因此图形拟合的会比 PRED vs. DV 好。图形差不多,就不放这里了
2. IWRES vs. IPRED and |IWRES| vs. IPRED
下面是一张|IWRES| vs. IPRED的图,由于是绝对值,因此纵坐标大于0,模拟良好的图应该是那条模拟的线基本呈一条水平光滑的直线,且大部分点落于小于3的位置上。
而在模型拟合中,加和型误差模型能够反映差值的绝对值。如果数据集的跨度范围过大,对于数据小的点来说,由于数值小,因此误差也会小,而对于数值大的点来说,由于本身的点就大,因此数值大的点误差也会大,导致加和型残留误差模型不足以解决这么大的差异,就会呈现出下图的模样。此时最好用比例型误差模型,即每个误差的绝对值再除以本身的值。这样就能形成相对误差。
错误的比例型误差模型应用时,由于小的数值的分母小,造成算出来的相对误差会增大,在图上显示出小的误差相对大的误差来得大,此时可能用加和型的误差模型会更好。
2. 推测参数估计的准确度
当协方差步骤完成后,THETA,OMEGA,SIGMA的标准误都可以得到。这个标准误除以估计值得到的是percent standard error of the mean(%SEM)或者是 percent relative standard error(%RSE)。
一般来说,对于固定效应参数的RSE应当在30%以下,而随机效应的参数应该在40~50%之间。
随机效应OMEGA or SIGMA也有其他的计算方法,比如OMEGA的RSE的计算通常是?完成。
一般来说,所有参数的相关性应该要小于0.9 ,这样的话每个估计值才能是独立的。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)