SD与SEM有区别吗

SD与SEM有区别吗,第1张

SD:标准差(StandardDeviation),又常称均方差,标准差是离均差平方和平均后的方根,用σ表示。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。

SEM:标准误(StandardErrorofMean),即样本均数的标准差,是描述均数抽样分布的离散程度及衡量均数抽样误差大小的尺度,反映的是样本均数之间的变异。标准误不是标准差,是多个样本平均数的标准差。

标准差与标准误都是数理统计学的内容,两者不但在字面上比较相近,而且两者都是表示距离某一个标准值或中间值的离散程度,即都表示变异程度,但是两者是有着较大的区别的。

首先要从统计抽样的方面说起。

标准差:表示的就是样本数据的离散程度。标准差就是样本平均数方差的开平方,标准差通常是相对于样本数据的平均值而定的,通常用M±SD来表示,表示样本某个数据观察值相距平均值有多远。从这里可以看到,标准差受到极值的影响。标准差越小,表明数据越聚集;标准差越大,表明数据越离散。标准差的大小因测验而定,如果一个测验是学术测验,标准差大,表示学生分数的离散程度大,更能够测量出学生的学业水平;如果一个测验测量的是某种心理品质,标准差小,表明所编写的题目是同质的,这时候的标准差小的更好。标准差与正态分布有密切联系:在正态分布中,1个标准差等于正态分布下曲线的68.26%的面积,1.96个标准差等于95%的面积。这在测验分数等值上有重要作用。

标准误:表示的是抽样的误差。因为从一个总体中可以抽取出无数多种样本,每一个样本的数据都是对总体的数据的估计。标准误代表的就是当前的样本对总体数据的估计,标准误代表的就是样本均数与总体均数的相对误差。标准误是由样本的标准差除以样本容量的开平方来计算的。从这里可以看到,标准误更大的是受到样本容量的影响。样本容量越大,标准误越小,那么抽样误差就越小,就表明所抽取的样本能够较好地代表总体。

拓展资料

标准差(StandardDeviation),在概率统计中最常使用作为统计分布程度(statisticaldispersion)上的测量。标准差定义是总体各单位标准值与其平均数离差平方的算术平均数的平方根。它反映组内个体间的离散程度。

假设有一组数值X1,X2,X3,......XN(皆为实数),其平均值(算术平均值)为μ,

标准差也被称为标准偏差,或者实验标准差,公式为

标准误用来衡量抽样误差。标准误越小,表明样本统计量与总体参数的值越接近,样本对总体越有代表性,用样本统计量推断总体参数的可靠度越大。因此,标准误是统计推断可靠性的指标。

其实应该说是最大似然法和最小二乘法的区别吧。

采用OLS的回归分析方法存在几方面的限制:

(1)不允许有多个因变量或输出变量

(2)中间变量不能包含在与预测因子一样的单一模型中

(3)预测因子假设为没有测量误差

(4)预测因子间的多重共线性会妨碍结果解释

(5)结构方程模型不受这些方面的限制

SEM的优点:

(1)SEM程序同时提供总体模型检验和独立参数估计检验;

(2)回归系数,均值和方差同时被比较,即使多个组间交叉;

(3)验证性因子分析模型能净化误差,使得潜变量间的关联估计较少地被测量误差污染;

(4)拟合非标准模型的能力,包括灵活处理追踪数据,带自相关误差结构的数据库(时间序列分析),和带非正态分布变量和缺失数据的数据库。

构方程模型最为显著的两个特点是:

(1)评价多维的和相互关联的关系;

(2)能够发现这些关系中没有察觉到的概念关系,而且能够在评价的过程中解释测量误差。

1、最小二乘法的典型应用是求解一套x和y的成对数据对应的曲线(或者直线)方程。

其思想是:设y和x之间的关系可以用一个公式在表示,但其系数为待定系数。然后,将各个点的实测数据与计算求得的数据相减,得到“误差”或者不符值(有正有负,但其平方都是正的),将这些不符值的平方相加,得到总的“误差”。通过调整公式中的各个系数,使得误差平方和最小,那么就确定了y和x之间的方程的最好结果。求解最小二乘问题的过程中没有提及概率问题。

2、而极大似然估计值,是用于概率领域的一种方法,和最小二乘法是两个领域的。这种方法是应用求极大值的方法,让某一个公式求导值为0,再根据情况判断该极值是否是合乎要求。极大似然估计法可以用于正态分布中 μ, σ2的极大似然估计。极大似然估计法就是要选取类似的数值作为参数的估计值,使所选取的样本在被选的总体中出现的可能性为最大。

调整样品台倾斜角度!一种所谓机械对中样品台在这个调解过程中,虽然不能精确的保证样品倾斜时严格以同一个轴线来调整,但基本观察视野不会跑,不离焦!这样翻过来调过去的看,你就看清楚了!

稍微多讲点有关EM立体成像技术:

1950年代,美国科学家在实验室,第一次使用SEM弄出了立体对,那时SEM还没有商品化!在一般摄影上被称作全息照相!

现在FEI公司有这样的选购软件,可以用在SEM或TEM上。自动控制样品台按照一定角度间隔倾斜,且保证倾斜同轴,每个角度保存一幅图像,然后把N个图像合成一个立体图像,是最为精准的技术。SEM形成表面立体形貌像,TEM的立体像和CT效果相同。由于要求样品台精度极高,且运算复杂,价格贼贵!

为了简化操作,节约成本,只看个大概!最常用的立体对方法是样品角度不变,电子束以一定允许的夹角从两个方向分别扫描一张图像,一张红色伪彩,一张绿色伪彩。把两张照片叠加,形成红绿重影像!然后戴个红绿镜片眼镜,也可看到立体图像,解决你的问题!

除了立体对技术,还有就是线扫描Y增益的示波器技术!

有些扫描电镜带有示波器,扫描发生器让电子束在划定的直线上扫描,然后把信号曲线画在直线上方,因为图像信号强度是电子束与像素表面角度的函数,一般认为曲线的高低起伏代表样品的高低起伏。如果将一帧图像均做Y增益,即可用软件合成一幅立体表面形貌像。有些厂商忽悠客户说此为表面立体像,其实很不严谨,因为很多时候会有假象存在,基本上没有实用价值,很多厂商取消了这个功能!

如果没有做以上的多角度观察,那就要考验成像信号的判断。就这张图像而言,可以肯定:金字塔在基底上凸起!棱角凸起信号强度高,发亮;凹陷信号强度低,发暗!


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/116644.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-03-13
下一篇2023-03-13

发表评论

登录后才能评论

评论列表(0条)

    保存