求论文开题报告

求论文开题报告,第1张

开题报告填写事项

一、填写必须实事求是,字迹要端正、清楚。

二、本报告的第一至第六部分由研究生本人填写(字数不少于2000字)。其余部分由指导教师、开题报告评议小组、教研室(研究室)主任、院长、研究生处填写。

三、硕士研究生开题报告日期规定为进校后第三学期完成。

四、开题报告评议小组由学院统一集中组织,对开题报告通不过者要在1至2个月内补做,重新审核合格后,才允许正式进入课题,否则取消进入论文阶段资格。

五、此表留存研究生处学位办一份。

本课题所涉及的内容(包括实验数据、计算机程序、导师未公开发表的研究成果及心得等),除在毕业论文中所发表的以外,本人保证:未经导师正式同意,五年内不以任何形式向第三方公开。

研究生(签字)

导 师(签字)

年 月 日

一、课题的来源及意义

本课题主要来源于导师的研究课题。

现代科学技术发展使得复合化成为材料发展的必然规律。近年来,纳米复合材料的研究发展迅速,无论是从学术研究角度考虑,还是从工业生产实际出发,人们都已开展了大量的实验研究工作。所谓纳米复合材料(Nanocomposites)是80年代初由Roy等人提出的,是指复合材料中分散相尺度至少有一维小于100nm的复合材料。由于纳米粒子具有小尺寸效应、大的比表面产生的界面效应、量子效应等特殊性能,故能赋予纳米复合材料许多特殊的性能,为设计和制备高性能、多功能新材料提供了新的机遇。纳米复合材料被誉为“21世纪最有前途的材料”,成为材料科学研究的热点之一。

聚合物/层状硅酸盐(Polymer/Layered Silicate,PLS)纳米复合材料是纳米复合材料领域重要研究方向之一。PLS纳米复合材料既具有高分子材料的质轻、耐腐蚀、绝缘性好、易加工等特点,又具有无机材料的高强度、高模量、高耐热性等优点,有着广阔的发展前景。PLS纳米复合材料除具有一般纳米复合材料的性能外,还因其特有的纳米尺度上的片层结构使得复合材料的耐热性、尺寸稳定性、气体阻隔性及阻燃性等得到明显提高。PLS纳米复合材料的研制与开发为提高传统聚合物材料性能、拓宽聚合材料的应用范围起到了极大的促进作用。

根据复合物的微观结构,可以把复合物分成四类:相容性差的粒子填充复合物;普通的微粒填充复合物;插层型纳米复合材料;剥离型纳米复合材料。只有第三、第四类复合物实现了纳米尺度上的插层复合,且第四类复合物即剥离型纳米复合材料由于无机物在聚合物基体中实现了充分均匀的分散,其纳米尺度效应显著、界面结合强度更高。此类复合材料具有优异的力学性能和耐热性,并且材料的阻隔性均有所提高,是当前研究的主方向。

PLS纳米复合材料以其优良的性能越来越受到广泛地重视。目前,PLS纳米复合材料已从基础研究阶段向工业化生产阶段发展,日本的丰田公司(TOYOTA)、宇部公司(Unitsika)、美国的南方粘土(Southernay)等已经研制开发出PLS纳米复合材料的商业化产品。

本课题利用省内层状硅酸盐矿物(膨润土)和高分子原料,对聚合物原料进行改性,对膨润土原料进行深加工处理。研究聚合物、层状硅酸盐二者之间的复合机理、结晶过程、界面特征以及结构性能之间的关系,研究加工制备工艺过程对PLS纳米复合材料性能的影响以及最佳制备工艺参数的确定。用合理的加工技术方法,制备出性能优良的剥离型纳米复合材料。这既是本课题的特色和创新之处也是纳米复合材料的研究发展趋势所在。

二、简述该领域目前的国内外研究水平和发展趋势

聚合物/层状硅酸盐纳米复合材料是当今众多无机纳米粒子改性复合材料中最有潜力的一类纳米复合材料,也是目前研究最多、最有希望工业化生产的聚合物纳米复合材料。自从1987年日本丰田公司的研究开发中心首次报道用插层聚合的方法制备了尼龙6/粘土纳米复合材料以来,由于聚合物/粘土纳米复合材料实现了纳米相分散、强界面作用和自组装并具有较常规聚合物/无机填料复合材料无法比拟的优点(如优异的力学、热学性能和气体阻隔性能等),因此倍受关注。

据报导,预计今后PLS纳米复合材料的产值每年会增长约100%。到2009年,产值会达到15亿欧元/年,产量会达到50万吨/年。PLS纳米复合材料将会遍及人们生活的各个方面,飞机、汽车、包装、电子电器、建材、家俱等产业将广泛受益于这种新型材料。

1、 国外PLS纳米复合材料研究现状

自从20世纪80年代末期,Okada等人报道了PA6/层状硅酸盐纳米复合材料以来,迄今这一领域已得到长足的发展,成为目前聚合物材料的一个新热点。到目前为止,日本丰田研究中心、美国康耐尔大学、密歇根大学以及中国科学院化学研究所国内外众多研究单位都在这一领域进行深入的科学研究。

1987年,丰田中心研究和发展公司的Fukushima和Inagaki仔细地研究了聚合物/层状硅酸盐复合材料后,用季铵盐取代粘土片层间的无机离子,成功地改善了粘土与聚合物基体的相容性,研制出PLS型尼龙6/硅酸盐纳米复合材料,材料的热变形温度较纯尼龙6有大幅度提高,同时力学性能与阻隔性能均有不同程度的提高。丰田中心研究和发展公司的Usuki、Fukushima用已内酰胺的原位聚合法制备了剥离型的尼龙6/蒙脱土纳米复合材料(季铵盐改性的蒙脱土事先被均匀地分散于已内酰胺中),并制备出聚酰亚胺/蒙脱土纳米复合材料,发现只需添加2%(质量分数)的粘土,材料的气体阻隔性及线胀系数显著降低,适合PI在微电子领域的应用,这极大地引起了材料科学家的关注。

美国Comell大学的R A Vaia和E P Giannelis等对聚合物熔体插层进行了热力学分析,认为该过程是焓驱动的,因而必须加强聚合物与粘土间的相互作用以补偿整个体系熵值的减少。在此理论的指导下,他们通过聚合物熔体插层制备出PS/粘土,聚氧乙烯/粘土纳米复合材料,并对层间聚合物的受限运动行为进行了研究。Usuki等人深入研究了有机插层剂对插层复合的影响,并制备出一系列PLS纳米复合材料,并首先报道了“两步法”制备聚酰胺6/蒙脱土纳米复合材料,即先用12~18烷基氨基酸作插层剂对钠基蒙脱土进行阳离子交换处理,然后将阳离子交换后的蒙脱土与ε-己内酰胺复合,在常规条件下聚合,得到聚酰胺6/粘土纳米复合材料。西欧一些国家也先后制定了发展纳米复合材料研究的计划。一些国外的大公司特别是生产聚合物的厂家纷纷加入聚合物纳米材料的开发应用。

目前,丰田汽车公司已成功地将Nylon 6/clay纳米复合材料应用于汽车上。由于层状硅酸盐是纳米尺度分散于聚合物基体中,可以成膜、吹瓶和纺丝。在成膜和吹瓶过程中,硅酸盐片层平面取向形成阻挡层,因此可用于高性能包装和保鲜膜。

2、国内PLS纳米复合材料研究现状

我国的PLS纳米复合材料研究开始于90年代,现已取得了许多成果,并已列入国家“863规划”和“九五计划”的重点研究开发课题。中科院化学所对聚合物基粘土纳米复合材料的研究,发明了“一步法”制备Nylon 6/粘土纳米复合材料(nc-PA6),即将蒙脱土阳离子交换、己内酰胺单体插层以及单体聚合在同一个分散体系中完成,在不降低产品性能的前提下缩短了工艺流程,降低了成本。黄锐等利用刚性粒子对聚合物改性的研究在学术界极有影响;另外,四川大学高分子科学与工程国家重点实验室发明的磨盘法、超声波法制备聚合物基纳米复合材料也是一种很有前景的制备手段。

中科院化学所工程塑料国家重点实验室取得的成就有:单体插层缩聚制备了尼龙6/粘土纳米复合材料,可大幅度提高其热变形温度,扩大了材料的应用范围,并对插层剂的碳链长度与有机蒙脱土的层间距的关系进行了研究,在此基础上开发了PET/粘土、PBT/粘土纳米复合材料,提高了材料的热性能和阻隔性,其中PET/粘土纳米复合材料的结晶速度较PET提高了约5倍。此外还通过聚合物溶液插层及熔体插层分别制备出硅橡胶/蒙脱土及PS/粘土纳米复合材料,其中硅橡胶/蒙脱土纳米复合材料具有良好的耐磨性,各项物理、力学性能指标得到很大提高,可代替气相白炭黑填充硅橡胶,具有实用前景。相信在不久的将来,PLS纳米复合材料将会广泛应用于高分子材料及其它领域。

3、存在的问题及研究发展趋势

PLS纳米复合材料的不断涌现以及大量研究结果的报道,让我们看到了这类复合材料具有的优异特性,使得层状无机物插层改性聚合物制备高性能纳米复合材料成为国际上最新技术热点之一,但也存在以下几个问题。

① PLS纳米复合材料的研究尽管十分热门,但由于其插层复合机理复杂、结构与界面特征复杂,微区尺寸小,再加上量子效应、表面效应等,对它的研究还不够深入,特别是运用热力学、动力学和结晶学知识研究不够。对其结构、形态特征与材料性能的关系研究较少,合成方法大多基于合成宏观材料上的改进,存在着一定局限性;

② 剥离型PLS纳米复合材料比其它类型的复合材料具有更优异的性能,但对原材料加工处理、制备方法要求严格,对其制备工艺及过程研究不够;

③ 高聚物与纳米材料的混合、分散缺乏专业设备,用传统的设备往往使纳米粒子得不到良好的分散,要研究出新的混合分散技术方法及设备。

三、课题所要研究的内容及实施方案

(主要研究内容及预期成果,拟采用的研究方法、技术路线、实验方案的可行性分析。)

1、研究内容

(1)了解相应聚合物的物理化学性质,合成方法,用途及研究现状;了解PLS纳米复合材料所具备的优良性能,熟悉国内外PLS纳米复合材料的应用现状、研究进展、存在的问题及解决的措施;

(2)研究层状硅酸盐(膨润土)矿物学特征和纳米结构特征(层间距、层面特征和边缘特征),熟悉测试表征方法;并掌握对测试结果分析的技术方法;

(3)深入研究膨润土提纯、钠化、有机化的各种方法、反应机理;了解钠基土及有机土的应用价值和研究现状;制定合理的实验方案,对膨润土进行提纯,通过实验选择合适的反应条件和合适的钠化剂和表面修饰剂进行钠化、有机化,制备出亲油或亲水亲油的纳米膨润土;

(4)了解剥离型PLS纳米复合材料制备方法及性能特点,从动力学、热力学、结晶学、流变学等方面探讨纳米材料复合过程和机理;

(5)选择聚对苯二甲酸丁二醇酯(PBT)、聚氨酯(PU)两种聚合物,对其进行改性(接枝方法和离子化方法)制定合理的加工制备方案、确定最佳实验流程及实验参数,制备出剥离型PLS纳米复合材料;

(6)从制备方法、表面改性剂的选择、加入第三组分等方面研究有机膨润土在聚合物中的分散形态;并探讨多相体系中物相界面结构特征,制备出剥离型纳米复合材料。

(7) 研究PLS纳米复合材料结构和性能之间的关系。进行产品结构分析、力学性能和阻燃性能对比测试分析。

2、预期成果

(1)制备出优良的有机膨润土,制备出改性性能良好的聚合物;

(2)制备出剥离型PLS纳米复合材料;

(3)预期在核心期刊发表2篇论文或申报1项发明专利;

(4)完成毕业论文的编写,顺利通过答辩。

3、研究方法及技术路线

(1)实验研究流程图

(2)实验研究过程(方案)

① 层状硅酸盐的选择及改性处理

目前为止,能够在PLS纳米复合材料中得到应用的有膨润土、高岭土、海泡石等少数几种属于层状硅酸盐的矿物质。这其中最根本的原因是绝大多数的层状无机矿物质无法利用插层处理的方式扩张其片层之间的重复间距。因此,虽然他们具有层状的结构,各相邻的片层之间也具有一定的空间,但却不足以容纳旋转半径为上百埃的聚合物分子链插入到各片层之间,形成所谓的插层复合材料;而仅仅允许离子、小分子等小的介质进入其中。对于膨润土、高岭土等粘土矿物, 由于他们具有较大的初始间距以及可交换的层间阳离子,使得我们可以利用离子交换的方式将他们的层间距扩大到允许聚合物分子链插入的程度,从而可以利用它们制备出性能优异的插层纳米复合材料。

本课题利用省内矿产资源优势膨润土,其主要成分为蒙脱石。蒙脱石的基本结构单元是有一片铝氧八面体夹在两片硅氧四面体之间靠共用氧原子而形成的层状结构,属于2:1型层状硅酸盐。每个结构单元的尺度为1nm厚、长宽均为100nm的片层,层间有可交换性阳离子,如Na+、Ca2+、Mg2+等金属离子,因此容易与烷基季铵盐或其他有机阳离子进行交换反应生成有机膨润土。由于膨润土本身的亲油性较差,聚合物的单体或分子链又多为亲油性物质。因此,膨润土使用前必须经过有机化改性处理。

膨润土改性处理方案。

A、膨润土的提纯

实验方案:将膨润土与水(固液比为1:10)配成悬浮液,再经高速旋转的离心机沉降分离,并且加入适量的分散剂(六偏磷酸钠),进一步分离粒度较细的碎屑矿物(长石、碳酸盐等),得到粒度小于5µm的膨润土浆料或悬浮液,再将该悬浮液抽滤、洗涤、干燥、打散解聚,即可得到高纯度的膨润土产品。测其吸蓝量,CEC,膨胀倍,胶质价等性能指标。

B、钙基膨润土的钠化

钠化原理:当膨润土-水系统中存在两种离子时,就存在一个动态的吸附-解吸平衡,即离子吸附与交换过程。如当膨润土-水系统中同时含有Ca2+、Na+时就会发生如下离子交换平衡:

Ca-膨润土+2Na+ 2Na-膨润土+Ca2+

钠化剂的选择、用量、钠化温度及钠化时间对钠化效果都有一定的影响,通过实验,确定最佳反应条件。

C、膨润土的有机化

在制备PLS纳米复合材料时,常采用有机阳离子(插层剂)进行离子交换而使层间距增大,并改善层间微环境,使粘土内外表面由亲水转变为疏水,降低硅酸盐表面能,以利于单体或聚合物插入粘土层间形成PLS纳米复合材料。因此插层剂的选择是制备PLS纳米复合材料的关键步骤之一。它必须符合以下几个条件:(1)容易进入层状硅酸盐晶片(001面)间的纳米空间,并能显著增大粘土晶片间层间距;(2)插层剂分子应与聚合物单体或高分子链具有较强的物理或化学作用;(3)价廉易得,最好是现有的工业品。

在不同用量、酸碱性、反应温度等条件下,选择阳离子(十六烷基三甲基溴化铵)、阴离子(十二烷基硫酸钠)及阴阳双离子为插层剂,制备有机土,通过测试确定最佳反应条件。

② 聚合物改性

③ PLS纳米复合材料的制备

A、复合材料的类型

从微观结构上看,复合材料可分为四类,如下图。在第一类复合物中(a),蒙脱土颗粒分散在聚合物基体中,但聚合物与蒙脱土的接触仅限于蒙脱土的颗粒表面,聚合物没有进入蒙脱土颗粒中。第二类复合物(b)中,聚合物进入蒙脱土颗粒,但没有插层进入硅酸盐片层中。在插层型复合物(c)中,聚合物不仅进入蒙脱土颗粒,而且插层进入硅酸盐片层间,使蒙脱土的片层间距明显扩大,但还保留原来的方向,片层仍然具有一定的有序性。在剥离型复合物(d)中,蒙脱土的硅酸盐片层完全聚合物打乱,无规则地分散在聚合物基体中,此时蒙脱土片层与聚合物实现了纳米尺度上的均匀混合。四类复合材料中只有后两种才算是纳米复合材料,而且第四类剥离型复合材料比第三类插层型复合材料具有更理想的性能,是众多材料科学家追求的目标,也是本课题研究的重点。

B、制备方法

插层复合法(Intercalation Compounding)是制备PLS纳米复合材料的方法。按照复合的过程,插层复合法可分为两大类。(1)插层聚合法(Intercalation Polymerization),即先将聚合物单体分散、插层进入层状硅酸盐片层中,然后原位聚合,利用聚合时放出的大量热量,克服硅酸盐片层间的库仑力,使其剥离(exfoliate),从而使硅酸盐片层与聚合物基体以纳米尺度相复合;(2)聚合物插层(Polymer Intercalation),即将聚合物熔体或溶液与层状硅酸盐混合,利用力化学或热力学作用使层状硅酸盐剥离成纳米尺度的片层并均匀分散在聚合物基体中。

从制备方法来看,PLS纳米复合材料的制备可分为单体插层原位聚合与大分子直接插层;从实施途径来说有溶液法和熔体法。它们互相组合成四种具体制备过程:大分子熔体直接插层;大分子溶液直接插层;单体熔体插层原位本体聚合;以及单体溶液插层原位溶液聚合。制备PLS纳米复合材料流程图如下:

C、有机土加入量的选取

有机土加入量的多少直接影响着制品的质量和性能,有机土的加入量过高时,体系的粘度增大,很难脱泡及浇注;有机土加入量过低时,有机土在体系中的分散不好,起不到增强和增韧的效果。对于有机土加入量的多少,在研究领域内众口不一。我们采用不同含量(2-5%)的有机土进行插层复合,寻找最佳加入量。

D、实验方案

以PBT、PU聚合物为例,选用合适的插层方法,在不同的配料比下插层复合,测其力学性能、阻燃性能、热稳定性能等,从热力学、动力学等方面研究复合机理及影响复合过程的因素,得到性能优良的剥离型PLS纳米复合材料。

(3)PLS纳米复合材料主要性能测试与表征

① 甲醛容量法测膨润土阳离子交换容量(CEC),测吸蓝量计算膨润土中蒙脱土的含量,带塞量筒测其膨胀倍、胶质价;

② 扫描电镜(SEM)测聚合物及PLS纳米复合材料的微观形貌;

③ 傅立叶转换红外光谱(FTIR)分析,根据谱图的吸收峰判断有机化改性效果及插层效果;

④ X射线衍射分析仪(XRD)测试膨润土的层间距和复合材料的剥离程度;根据谱图用Jade软件确定蒙脱土的化学成分及含量;

⑤ 差热-热失重分析仪(TG-DTA)测定膨润土的转化温度及复合材料的热稳定性;

⑥ 电子万能实验机测拉伸强度和断裂伸长率,判断聚合物及PLS纳米复合材料的力学性能。

4、实验研究方案的可行性分析

(1)实验室有一系列的实验仪器:如真空泵、磁力搅拌器、恒温水浴锅、高温炉、干燥箱、开练机、双螺杆机和造粒机等;学校测试中心有扫描电镜、X-射线衍射仪、傅立叶转换红外光谱仪、差热-热失重分析仪、原子力显微镜等测试用仪器;

(2)导师长期从事这一领域的研究工作,有扎实的理论基础和丰富的实践经验,有师生组成的研究团队;

(3)学校图书馆可以查到大量的中外文文献资料和学术专著,可供参考;

(4)与企业合作,有丰富的实践基地和广阔的应用前景;

(5)已做了一些实验前期工作,制得的复合材料力学性能显著提高,且热稳定性很好;

(6)实验方案叙述合理,技术路线可行,理论基础清楚明了,实验研究条件基本具备,加上前期研究工作的进展,故本实验研究方案是可行的。

四、课题研究的创新之处

(研究内容、拟采用的研究方法、技术路线等方面有哪些创新之处。)

(1)PLS纳米复合材料作为一个崭新的研究领域,对其研究尤其剥离型复合材料的研究可以说仍处于初级阶段,理论上不够成熟,制备技术不够完善,对材料的复合机理,材料的结构及结构与性能间的关系等方面还有待于进一步探索。本课题从热力学、动力学等方面研究聚合物与层状硅酸盐(膨润土)复合的界面特征、内部结合机理,并探讨复合过程、材料结构对其力学性能、阻隔性能、流变性能、结晶性能等的影响。

(2)剥离型PLS纳米复合材料的发展水平仍处在实验研究或专利阶段,工业化项目极少,在高性能工程塑料、高性能树脂基体中的研究报道还较少。本课题从表面改性剂的选择、加入第三组分、高性能纳米膨润土的制备、聚合物的改性、合理制备方法的选择等方面进行系统实验研究,制备出性能优异的剥离型纳米复合材料。

五、工作量及工作进度安排(包括文献查阅、方案设计与实现、计算与实验、论文书写等)

起止日期 课题阶段工作进程

2007.2~2007.9

2007.10~2007.12

2008.1~2008.2

2008.3~2008.4

2008.5~2008.6

2008.7~2008.8

2008.9~2008.10

2008.11~2008.12

2009.1~2009.3

查阅文献资料、学术专著、参考书等,同时做了大量实验前期工作及一定的实验研究工作;

写开题报告并进行答辩,准备实验所需试剂和仪器;

研究钠基土、有机土的结构及结构与性能的关系,设计实验方案;通过实验和性能表征确定钠化、有机化过程最佳反应条件;在最佳反应条件下制备大量有机土,用XRD、FTIR、TG-DTA等表征,做好实验记录;

以PBT、PU聚合物为例,了解其物理化学性能、合成机理、合成方法及应用现状;选择合适的反应装置、合成方法,用单体合成所需要的聚合物;

查阅大量当前最新的中外文文献,了解纳米复合材料的研究现状及先进的制备方法;选择不同的有机土加入量(2-5%),用聚合物熔融插层法,聚合物熔液插层法,单体插入原位聚合法等不同的方法,控制反应条件,制备PLS纳米复合材料;

对制品进行力学性能、热学性能、阻隔性能等方面的测试,确定有机土的最佳加入量,找出即使制品性能优异、成本低又环保的制备方法;

用SEM测试产品的形貌,证实其剥离程度;用XRD测试有机土的层间距,分析其改性效果;复合材料中界面层的性质可以用示差扫描量热法(DSC)来表征;热失重分析(TGA)可以研究有机物对蒙脱土的改性程度及纳米复合材料的耐热性;

选择最好的制备方法,将聚合物与有机土进行复合,研制出纳米复合材料制品并详细表征其各种性能;

撰写论文,准备答辩。

六、国内外主要参考文献(列出作者、论文名称、期刊名称、出版年月)

序号 参考文献名称

梁宏斌,倪靖滨.聚合物/纳米复合材料研究进展[J].化学工程师,2006,3:26-28.

陈光明,李强,漆宗能.聚合物/层状硅酸盐纳米复合材料研究进展[J].高分子通报,1999,4:1-9.

韩建竹,夏英.聚合物/蒙脱土纳米复合材料的研究进展[J].高分子通报,2006,12:66-70.

李春生,周春晖,李庆伟.聚合物/蒙脱土纳米复合材料的研究进展[J].化工生产技术,2002,9(4):22-26.

陈国华,李明春.聚合物/粘土纳米体系[J].高分子材料科学与工程,1999,15(3):9-12.

Jitendra K Pandey,et a1.Polymer Degradation and Stability,2005,88:234

舒中俊,陈光明,漆宗能.聚合物/粘土纳米复合材料及其特殊阻燃性[J].2000,28(3):24-26.

张秀英,李国昌,王萍等.利用山东膨润土生产有机膨润土研究[J].2007,27(1):35-36.

潘兆橹,万朴应用矿物学[M].武汉:武汉工业大学出版社,1993.

杨雅秀.中国粘土矿物[M].北京:地质出版社,1994.

周建工,鲁安怀.利用低品位天然钙基膨润土制备低成本有机粘土实验研究[J].北京大学学报(自然科学版),2006,42(4)457-467.

陈兴华.聚合物/层状硅酸盐纳米复合材料的最新研究进展[J].广西轻工业,2007,(1):35-37.

黄锐,王旭,李忠明.纳米塑料-聚合物/纳米无机物复合材料研制、应用与进展[J].中国轻工出版社,2002,(4):10-12.

祝启砷,黄志良,王西文等.膨润土提纯增白与钠化改型联合处理工艺[J].中国矿业,2002,11(5):44-46.

漆宗能,尚文字.聚合物/层状硅酸盐纳米复合材料理论与实践[M].化学工业出版杜,2002.

ChenTian Y.Synthesis and Characterization of Novel Segmented Polyurethane/Clay Nan composites.Polymer,2000,41(4):1345-1349.

Cho,K.Lee, JKwon, K.J.Appl.Polymer Sci.2001,(79):1025-1028.

G-M.Kim D-H,Lee,B.Hofmann,et a1.Influence of nanoflllers on the deformation process in layered silicate/polyamide-12 nanoeomposites.Polymer,2001,42(3):95-110.

Hao Fong,Weidong Liu,Chi-Shan Wang,et a1.Generation of electro spun fibers of nylon 6-montmorillonite nanocomposite.Polymer,2002.43(3):775-780.

Cheon II Park,Park et a1.Polymer.2001,42:7465-7475.

Fornes T D,Yoo P J,et a1.Polymer.2001,42:9929-9940.

Cho J W,Paul D R.Polymer,2001,42:1083-1094.

Kaempfer D.Thomann R.el a1.Polymer.2002.43:2909-2916.

Dennis H R,Hunter D L,a1.Polymer.2001,42:9513-9522.

Marosi G,Keszei S Matko S,Bertalan G.Fire and Polymer,2006,4:117.

Sorathia U,Lynon R,Gann R G.Fire Technology,1997,33(3):351.

S.S.R.ay,K.YamadaM,Okamoto,et a1.New polylactide-layered silicate nanocomposites.

Concurrent improvements of material properties,biodegradability and melt theology [J].Polymer,2003.44(3):857-866.

宋军,倪卓,王宝辉,等.聚丙烯/蒙脱土纳米复合材料的制备和性能[J].现代塑料加工应用,2005,17(2):14-16.

苏海霞,曾幸荣.聚吡咯/有机蒙脱土纳米复合材料的制备及其导电性[J].化学与黏合,2005,27(3):127-130.

郑华,张勇,彭宗林,等.三元乙丙橡胶/蒙脱土纳米复合材料的制备与性能研究[J].世界橡胶工业,2005,32(6):l1-13.

吴德峰,周持兴.聚对苯二甲酸丁二醇酯/蒙脱土纳米复合材料的结晶结构及流变行为[J].高分子材料与工程,2005,21(5):132-136.

1、 至少列举国内外参考文献20篇;

2、 教科书、工具书不能作为参考文献;

3、 专著等参考书的数量小于总数量的三分之一;

4、 近五年出版的参考书数量不小于总数量的三分之一;

5、 外文参考文献的数量不小于总数量的三分之一。

1. 唯有时间的深度,才检验得了感情的 硬度

2. 独玉色彩丰富,因浓淡兼备,斑驳陆离,质地细腻, 硬度 较高而著称与世,可与翡翠相媲美,在世界上有"南阳翡翠"之美称。

3. 他的下巴 硬度 有时令人怀疑,在普雷斯科特的在线电影图片小说一连串暴打之后更是暴露无遗。

4. 聚晶金刚石是一种高 硬度 、高耐磨性的新型刀具材料,被广泛应用于工业领域。

5. 将数码摄像技术与传统的洛氏 硬度 计相结合,通过对测试过程的实时监控,得到压痕深度随时间变化的曲线。

6. 结果表明: 硬度 法,离心水质量法,碘吸光度法和酶水解法为检测板栗制品老化的代表方法。

7. 试片经热滚轧后, 硬度 和强度提升的同时不会伴随延性和韧性的减少。

8. 经测试发现,铸铁的组织均匀和碳化物细小时,其布氏 硬度 与机械加工性能之间呈线性关系。

9. 在面团的质地剖面分析中,配方水份越大其春?皮的 硬度 、附著力、弹性、内聚性、咀嚼度、胶著感和弹力等数值会越小。

10. 本产品采用超细颗粒钨钢材料,具有 硬度 高,刀刃锋利,使用寿命长等特点。

11. 这些改变增加了悬吊系统整体的 硬度 ,和较软的避振器平衡。

12. 配备自动探伤仪,洛氏 硬度 仪和五元素及碳硫告诉分析仪。

13. 这是肖氏 硬度 75以上的铅版塑料版、平聚版无法比拟的.

14. 维氏 硬度 ,布氏硬度和洛氏硬度试验等试验方法凡是被用来测量硬度。

15. 特别调整:定制的压缩阀堆栈,如果零售版 硬度 为5,这支硬度则为8。

16. 另外,研究了消失模铸造法铸型表面 硬度 、界面换热系数的变化规律。

17. 因此提出了自动加载的洛氏 硬度 测量方法。

18. 高 硬度 ,高溶点,耐高温及耐腐蚀等特性,使得碳化矽在许多领域中成为不可或缺的材料。

19. 二看 硬度 ,耐划伤,保护木器漆历久弥新。

20. 方法:用拉力机、显微 硬度 机测试。

21. 适合测量印刷业使用的胶布及墨辊之 硬度 .

22. 硬度 高于棕刚玉,磨粒易破碎,棱角锋利,切削性能好,磨削热量小等。

23. 许多产品的质量取决于其柔韧度或 硬度 ,如,包装、纸牌、硬纸板织物、金属丝、管、塑料和金属部件。

24. 测定磨具 硬度 的方法,较常用的有手锥法、机械锥法、洛氏硬度计测定法和喷砂硬度计测定法。

25. 自古南阳出美玉,南阳独玉是我国四大名玉之一,产于南阳市北郊独山,独玉色彩丰富,因浓淡兼备,斑驳陆离, 硬度 较高而著称与世,可与翡翠相媲美,在世界上有”南阳翡翠“之美称。

26. 结果表明,零件毛坯等温正火可以获得比普通正火更细的晶粒、更均匀的金相组织、更小的 硬度 散差.

27. 采用聚氧化丙烯多元醇、二醇扩链剂和多异氰酸酯为原料,用一步法工艺制得一系列高 硬度 聚氨酯弹性体。

28. 该圆锥破碎机可以粉碎与卫生部的中,高,如铁矿石,铜矿石,石灰石,石英,花岗岩,岩石 硬度 表等材料。

29. 研究了H13钢连杆锻模的寿命问题,讨论了模具寿命与模具 硬度 的关系,提出了提高模具寿命的措施,设计了H13钢连杆锻模的最佳热处理工艺。

30. 先进的热流道设计,精密加工工艺,确保注塑密度一致,成品率高,注腔表面 硬度 大于HRC60C,经久耐用。

31. 特别适用于破碎高 硬度 物料,如石英石、玄武岩等。

32. 注塑级,改性级,最高抗冲击强度,低 硬度 。宜制工程件。

33. 切削速度和材料 硬度 是决定切屑变形的两个主要影响因素。

34. 结果表明,该涂层具有优良的防粘性, 硬度 和附着力.

35. 最后从理论和试验两个角度对系统精度给出了详细的分析与计算,得出洛氏 硬度 系统满足国标的精度要求。

36. 采用热模锻制备7075铝合金导弹锥壳模拟试件,研究了锻后锻件各部位金相组织和 硬度 值分布情况.

37. 金属就是通常具有良好导电性和导热性的元素。许多金属具有高强度、高 硬度 以及良好的延展性。

38. 本文工作表明,锚具夹片与钢绞线表面 硬度 是影响锚具可靠性的重要因素。

39. 结果表明:适当控制氮气与丙烷的比例可以获得良好的渗层组织及很高的表面 硬度 刚玉流动粒子炉渗碳能够获得较高的渗碳速度.

40. 对铬镍钢强度与 硬度 之间的关系进行了回归分析,建立了相应的回归关系式。

41. 在显微镜下观察试样, 硬度 试验可保证焊接工艺能提供适当的硬度。

42. 介绍采用热化学共渗法对硬质合金拉丝模芯进行超硬化处理,以提高其表面 硬度 的方法。

43. 通过GDOES、XRD等手段标定表层成分和相结构,借助显微 硬度 计和球盘磨损仪测试合金渗层的性能。

44. 红实美为新引进品种,果实 硬度 大,高抗白粉病,两年栽培性状表现好,建议在生产上推广这三个品种。

45. 折射性强,有杰出地外表 硬度 与光泽,不易破裂,不易刮花”…

46. 结果表明, 硬度 实验类似于压缩实验中的镦粗,硬度计压头可使金属基体发生塑性变形及粘性流动。

47. 结果表明,采前喷钙处理和采后乙烯吸附剂处理均能有效保持果实 硬度 ,推迟呼吸跃变到来,延长果实贮藏时间。

48. 电子布氏 硬度 计具备了10级试验力,可分别测试布氏硬度的10种标尺。

49. 经凹唇壁蜂传粉,红富士苹果种子数、单果重和果形指数增加,但并未影响果实的着色和 硬度 。

50. BPP用量增大,焦烧时间缩短,转矩不变,正硫化时间缩短,压缩永久变形增大,对 硬度 、伸长率、拉伸强度和撕裂强度的影响轻微。

51. 靠石蜡调节其流动性、增粘树脂体现其粘度、滑石粉提高其 硬度 .

52. 水分调节和 硬度 对小麦研磨特性的影响相似。

53. 结果表明,高珠光体含量球铁凸轮轴的洛氏 硬度 随着球化率和珠光体含量的升高而增加。

54. 该技术采用微合金化,利用正交试验设计方法,对不同成分搭配的试样进行宏观 硬度 和冲击韧性测试,优化了合金成分。

55. 每一英寸厚的精金有20点的 硬度 和40点的耐久度。

56. 既可应用于石油泵管内孔表面洛氏 硬度 测量,亦可应用于其它深孔管件的内孔表面洛氏硬度测量。

57. 对低温盐浴氮碳共渗工艺所获渗层的金相组织及 硬度 进行了分析.

58. 研究结果表明,在镀液中添加稀土可以提高亮镍镀层的 硬度 和镀液的阴极极化能力,提高镀层与基体的结合强度和金刚石工具的磨削比。

59. 该产品具有优良的透明度,韧性,耐化学性,表面 硬度 ,抗磨损,尺寸稳定性,和抗紫外线等特点。

60. 就热压烧结工具而言,结块胎体 硬度 是易于观测和控制的主要参数,且与上述两项指标的关系密切.

61. 国内首次研制成功转向器齿条 硬度 全自动测试分选系统。

62. 化学复合镀是在普通化学镀基础上,通过加入高 硬度 、高耐磨性的复合粒子发展起来的一种表面处理技术。

63. 发现该硬化层由表及里可分四层,其中第二层显微 硬度 最高,第四层显微硬度最低。

64. 在摩擦过程中,摩擦表面形成一具有高 硬度 的表面层,在摩擦表面层的最表层还覆盖着一层表面膜。

65. 还拥有先进的检测仪器,主要检测仪器有:布洛维光学 硬度 仪,电脑镀层测厚仪,镀锌盐雾试验室,光学投影仪!

66. 分析现有的几种纳米压痕 硬度 计测方法,找出它们的优缺点,并对未来发展方向做了展望。

67. 呈白色, 硬度 比棕刚玉略高、韧性稍低.

68. 因此,对衬板材质的要求是:既要求具有很高的表面 硬度 ,以抵抗矿石的凿削与切削,又要求具有很高的强度与韧性,以抵抗冲击载荷。

69. 利用XRD、SEM、显微 硬度 计等测试手段,系统研究了镍基复合喷焊层的组织和性能。

70. 用压痕功法对单晶硅的压痕 硬度 进行了实验研究,并与其它方法进行了比较分析。

71. 采用隔膜压滤机,棕榈硬脂 硬度 提高、棕榈液油得率增加,分离效果好。

72. 析出物结构板结、致密、 硬度 大,属于无序聚集体。

73. 转印辊的海绵 硬度 、密度、导电性均严格按照OEM标准生产,打印黑度与OEM完全一致。

74. 用户购买我公司标准 硬度 块,在运输路途中撞伤,请及时和我公司联系。我公司负责反修。

75. 额头和脸颊皮肤的 硬度 通过硬度计进行测定。

76. 采用该法研制的新型糖果,咀嚼时间长,口感类似胶姆糖,有较好的粘弹性和 硬度 ,可被人体完全消化代谢。

77. 研究分析表明,晶粒细化、高的马氏体含量、马氏体高位错密度和固溶含碳量是获得超高 硬度 的主要原因。

78. 最后从结构、成分、颜色、透明度、 硬度 、韧度及块度等对南郑蛇纹石玉进行了客观分析及质量评价,并对其开发前景进行了展望。

79. 公司还拥有多台精密分条机、 硬度 测试机.

80. 这种渗层具有极高的 硬度 和耐磨性。试验采用的砂封法代替泥封法封箱,既简化了操作,又有利于渗层质量。

81. 性能与特点:全纤维炉衬重量轻、升温快、金属马弗耗气省,自动便捷,处理后的工作表面光洁、 硬度 均匀。

82. 液压圆锥破碎机可破碎中,高 硬度 ,如铁矿石,铜矿石,花岗岩,玄武岩,鹅卵石,大理石,石灰石等材料。

83. 然后再趴下,胸前石子儿的 硬度 更胜从前。

84. 与棕,白刚玉相比 硬度 高,韧性大,呈单颗粒球状晶体,具有良好的多棱切削刃,抗破碎较强。

85. 你知道吗?有些神经病理学家对最佳的床褥 硬度 争论不休.

86. 通过铸造表面合金化和复合变质处理,使中锰奥氏体钢的强度、韧性和表面 硬度 显著提高。

87. 通过对镶铸试样结合区的宏观观察和微观组织分析与 硬度 检测,论述了复合铸造的机理与结合区新相的形成过程。

88. 洛氏 硬度 计是检测材料和零件硬度较精密的计量仪器,用来测量材料或者成品半成品的相应硬度,其性能指标主要体现在检测精度和操控性两个方面。

89. 采用有限元方法模拟了微压痕实验,发现TNT非局部理论预测的微压痕 硬度 与实验结果符合得很好。

90. 性能与特点:全纤维炉衬重量轻、升温快、金属马弗耗所省,自动便捷,处理后的工件表面光洁、 硬度 均匀。

91. 棕刚玉是以铝矾土为主要原料,经高温溶炼而成。呈棕褐色、 硬度 高、韧性大。

92. 采用宏观分析、显微检验和 硬度 测定对压铸模进行了失效分析。

93. 采用固态扩渗锌粉方法,对纯镁进行表面合金化改性工艺处理,研究合金层组织结构、 硬度 及其腐蚀行为。

94. 琴槌的 硬度 是维护一个真钢琴时可以调整的东西。

95. 具有高 硬度 和高韧性,晶粒度为细级别的牌号.

96. 分析了橡胶在二甲醚中溶胀的化学机理,并选出具有不同极性的橡胶材料进行耐二甲醚溶胀及溶胀前后拉断强度、拉断伸长率、 硬度 等力学性能的对比试验。

97. 测定各组铸造冠的精度,表面粗糙度和 硬度 。

98. 轮齿经过渗氮处理,具有极高的 硬度 ,并且即使在高速也能改善耐磨性.

99. 磨削热导致回火引起淬硬钢磨削后表面 硬度 变化.

100. 大量纤维组织使得肿瘤呈硬癌的 硬度 。

101. 本文应用灰色系统方法,对桂林市轮胎厂供水井岩溶地下水总 硬度 未来变化趋势进行了预测。

102. 此 硬度 计的依据是矿物的相对研磨能力。

103. 适用范围:家用小型采暖炉循环水系统中,适用于高 硬度 水质.

104. 冲击载荷能量的积累,造成涂层试样 硬度 变化和塑性变形.

105. 辊子的一些特性,例如:强度、耐热性、抗拉强度、接触疲劳强度都和剥落有关。因此,强度可作为 硬度 的参数来研究。

106. 模切底辊选用高品质的高速工具钢,真空热处理至62洛氏 硬度 之上已确保其耐磨性.

107. 不同的岩层拥有不同的 硬度 ,因而侵蚀作用所造成的磨损情况也各不相同,所以就会形成奇异而独特的形状。

108. 压膜辊由特殊硅胶做成,适中 硬度 ,压膜板面均匀牢固.

109. 顾名思义,耐磨焊条,耐磨性能高, 硬度 也就高.

110. 并且玻璃盘基在很薄的情况下依然能保持较好的刚度和 硬度 ,更符合硬盘技术的发展趋势。

111. 你添加柔体修改器后,你可以调整所有弹簧边的 硬度 ,可以让你的多边形松弛、弯曲、随着微风摆动,或者在地面上搅动。

112. 用其制备的涂料具有良好的耐化学腐蚀性、高 硬度 和良好的光泽性。

113. 表二:方差分析,因子模型,根据片剂 硬度 。

114. 然后在 硬度 计的刻度盘上读出硬度数值。洛氏硬度计测试非常快捷,并且适用于部件的成批检验。

115. 直领,前胸褶条设计,加上 硬度 适中的面料,让爱美的女性穿上显得庄重,又带点恬美的温柔!

116. 其特点是强度高、 硬度 高、耐磨性好。所以,其切削加工性差,主要是刀具耐用度和加工效率均低。

117. 活塞杆微裂纹镀硬铬,增因 硬度 减少磨擦,保持油膜润滑效果值.

118. 相比于普通硬质合金具有更高的 硬度 、断裂韧性、抗弯强度及优异的耐磨损性能,具有广阔的应用前景。

119. 海南橡胶木颜色呈淡黄色、 硬度 适中,易于加工。

120. 研究了配副 硬度 差与磨损率的关系,根据这种关系确定了最佳配副组合。

等离子清洗机广泛用于LED,LCD, LCM,手机配件,笔记本电脑按键及外壳,光学元器件,光学镜片,电子芯片,集成电路,五金,精密零件,塑胶制品,生物材料,医疗器皿,晶圆等的表面处理。 经过等离子处理的物件表面活化效果最好,物件的水浸润效果也是最佳的。如微晶玻璃,光学镜片镀腊粘接前等离子处理,能有效提升产品品质。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/116785.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-03-13
下一篇2023-03-13

发表评论

登录后才能评论

评论列表(0条)

    保存