你自己根据自己的的数据情况看吧,对于你提到的指标,我相信90%的文献都说是0.9以上为标准的,这个经验值还是很可信的,如果你不是正在写论文,那完全可以接受这个结果,如果你一定想要结果好,那就要么好好处理处理数据,重新做一下结构方程的分析,要么就找到相关的文献支持,以表明你用0.9以下的指标数值是合理的
如果是论文答辩或者发论文,只是0.8过一些那很可能要被答辩老师或者审稿人质疑的,接近0.9应该还勉强可以
本篇记录下用stata进行中介分析,其中,自变量,中介变量和因变量均为连续变量。
中介分析可以用命令 sem ,即进行结构方程模型也是用这个命令,只不过中介分析没有测量模型而已。
其中,自变量(X)为 EC ,中介变量(M)为 SDO ,因变量(Y)为 forei 。
结果如下,可以看到,报告的是标准化系数,X到M结果显著,M到Y显著,控制M之后,X到Y不显著了。
对直接效应,间接效应和总效应进行估计的结果如下,最后一列为标准化系数,但是,没有相应的z值,和95%CI
使用命令 estat stdize 可以得到不同路径相应的标准化统计量。
路径a,b和c’的结果如下:
路径ab和总效应结果如下:
此外,还有个命令可以直接报告中介效应结果,即 medsem
结果如下,报告了两种检验中介效应的方法,以及中介效应是否存在的结论。
通过命令 help medsem 后可以详细了解该命令。
除了上述提到的两种检验中介效应的方法外,还有bootstrap法。
具体介绍可参见文献:
Fritz, M. S., &MacKinnon, D. P. (2007). Required Sample Size to Detect the Mediated Effect. Psychological Science, 18 (3), 233-239.
stata的实现方式是:
抽取5000个样本,时间有些长,得等会儿……结果如下:
stata里面变量都是可测的那sem里面潜变量在结构方程模型反应的结构方程模型时基于变量的协方差矩阵来分析变量关系的统计方法。
通过这种方法我们可以得到因变量受那几个自变量的影响,也可以知道一个自变量通过什么途径影响因变量,还可以知道在不同情境下,自变量对因变量的影响有何不同等多种复杂关系。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)