1CPU金牌6326 16核心32线程 基频2.9GHZ 加速频率3.5GHZ TDP: 185W2
2内存512G(32GB*32) DDR4 3200MHZ1
4准系统超微420GP-TNR 4U机架式准系统, 带2200W冗余2+2电源平台最大支持lO个GPU
32个DIMM插槽;母板超级X12DPG-OA6处理器中央处理器双插槽 P+ (LGA-4189)第三代英特尔 至强 可扩展处理器支持CPU TDP 270W核心高达40C/80T;高达 60MB 的缓存图形处理器支持的GPUHGX A100 8-GPU 40GB/80GB SXM4 多 GPU 1
5SSD三星PM9A1 1TB M.2接口 NVMe协议 四通道 PCIe4.0 固态硬盘1
6SATA希捷(Seagate)银河系列V6 6TB ST6000NM021A 7200RPM 256MB SATA3企业级硬盘1
7GPU卡英伟达RTX 4090公版4
深度学习是需要配置专门的GPU服务器的:
深度学习的电脑配置要求:
1、数据存储要求
在一些深度学习案例中,数据存储会成为明显的瓶颈。做深度学习首先需要一个好的存储系统,将历史资料保存起来。
主要任务:历史数据存储,如:文字、图像、声音、视频、数据库等。
数据容量:提供足够高的存储能力。
读写带宽:多硬盘并行读写架构提高数据读写带宽。
接口:高带宽,同时延迟低。
传统解决方式:专门的存储服务器,借助万兆端口访问。
缺点:带宽不高,对深度学习的数据读取过程时间长(延迟大,两台机器之间数据交换),成本还巨高。
2、CPU要求
当你在GPU上跑深度网络时,CPU进行的计算很少,但是CPU仍然需要处理以下事情:
(1)数据从存储系统调入到内存的解压计算。
(2)GPU计算前的数据预处理。
(3)在代码中写入并读取变量,执行指令如函数调用,创建小批量数据,启动到GPU的数据传输。
(4)GPU多卡并行计算前,每个核负责一块卡的所需要的数据并行切分处理和控制。
(5)增值几个变量、评估几个布尔表达式、在GPU或在编程里面调用几个函数——所有这些会取决于CPU核的频率,此时唯有提升CPU频率。
传统解决方式:CPU规格很随意,核数和频率没有任何要求。
3、GPU要求
如果你正在构建或升级你的深度学习系统,你最关心的应该也是GPU。GPU正是深度学习应用的核心要素——计算性能提升上,收获巨大。
主要任务:承担深度学习的数据建模计算、运行复杂算法。
传统架构:提供1~8块GPU。
4、内存要求
至少要和你的GPU显存存大小相同的内存。当然你也能用更小的内存工作,但是,你或许需要一步步转移数据。总而言之,如果钱够而且需要做很多预处理,就不必在内存瓶颈上兜转,浪费时间。
主要任务:存放预处理的数据,待GPU读取处理,中间结果存放。
深度学习需要强大的电脑算力,因此对电脑的硬件配置自然是超高的,那么现在普通的高算力电脑需要高配置硬件。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)