信号量的创建

信号量的创建,第1张

同共享内存一样,系统中同样需要为信号量集定制一系列专有的操作函数(semget,semctl等)。系统命令ipcs可查看当前的系统IPC的状态,在命令后使用-s参数。使用函数semget可以创建或者获得一个信号量集ID,函数原型如下:

#include <sys/shm.h>

int semget( key_t key, int nsems, int flag)

函数中参数key用来变换成一个标识符,每一个IPC对象与一个key相对应。当新建一个共享内存段时,使用参数flag的相应权限位对ipc_perm结构中的mode域赋值,对相应信号量集的shmid_ds初始化的值如表1所示。

shmid_ds结构初始化值表 ipc_perm结构数据 初 值 ipc_perm结构数据 初 值 Sem_otime 0 Sem_nsems Nsems Sem_ctime 系统当前值 参数nsems是一个大于等于0的值,用于指明该信号量集中可用资源数(在创建一个信号量时)。当打开一个已存在的信号量集时该参数值为0。函数执行成功,则返回信号量集的标识符(一个大于等于0的整数),失败,则返回–1。函数semop用以操作一个信号量集,函数原型如下:

#include <sys/sem.h>

int semop( int semid, struct sembuf semoparray[], size_t nops )

函数中参数semid是一个通过semget函数返回的一个信号量标识符,参数nops标明了参数semoparray所指向数组中的元素个数。参数semoparray是一个struct sembuf结构类型的数组指针,结构sembuf来说明所要执行的操作,其定义如下:

struct sembuf{

unsigned short sem_num

short sem_op

short sem_flg

}

在sembuf结构中,sem_num是相对应的信号量集中的某一个资源,所以其值是一个从0到相应的信号量集的资源总数(ipc_perm.sem_nsems)之间的整数。sem_op指明所要执行的操作,sem_flg说明函数semop的行为。sem_op的值是一个整数,如表2所示,列出了详细sem_op的值及所对应的操作。

sem_op值详解 Sem_op 操 作 正数 释放相应的资源数,将sem_op的值加到信号量的值上 0 进程阻塞直到信号量的相应值为0,当信号量已经为0,函数立即返回。如果信号量的值不为0,则依据sem_flg的IPC_NOWAIT位决定函数动作。sem_flg指定IPC_NOWAIT,则semop函数出错返回EAGAIN。sem_flg没有指定IPC_NOWAIT,则将该信号量的semncnt值加1,然后进程挂起直到下述情况发生。信号量值为0,将信号量的semzcnt的值减1,函数semop成功返回;此信号量被删除(只有超级用户或创建用户进程拥有此权限),函数smeop出错返回EIDRM;进程捕捉到信号,并从信号处理函数返回,在此情况将此信号量的semncnt值减1,函数semop出错返回EINTR 负数 请求sem_op的绝对值的资源。如果相应的资源数可以满足请求,则将该信号量的值减去sem_op的绝对值,函数成功返回。当相应的资源数不能满足请求时,这个操作与sem_flg有关。sem_flg指定IPC_NOWAIT,则semop函数出错返回EAGAIN。sem_flg没有指定IPC_NOWAIT,则将该信号量的semncnt值加1,然后进程挂起直到下述情况发生:当相应的资源数可以满足请求,该信号的值减去sem_op的绝对值。成功返回;此信号量被删除(只有超级用户或创建用户进程拥有此权限),函数smeop出错返回EIDRM:进程捕捉到信号,并从信号处理函数返回,在此情况将此信号量的semncnt值减1,函数semop出错返回EINTR

信号量:一个整数;

大于或等于0时代表可供并发进程使用的资源实体数;

小于0时代表正在等待使用临界区的进程数;

用于互斥的信号量初始值应大于0;

只能通过P、V原语操作而改变;

信号量元素组成:

1、表示信号量元素的值;

2、最后操作信号量元素的进程ID

3、等待信号量元素值+1的进程数;

4、等待信号量元素值为0的进程数;

二、主要函数

1.1 创建信号量

int semget(

key_t key, //标识信号量的关键字,有三种方法:1、使用IPC——PRIVATE让系统产生,

// 2、挑选一个随机数,3、使用ftok从文件路径名中产生

int nSemes, //信号量集中元素个数

int flag //IPC_CREAT;IPC_EXCL 只有在信号量集不存在时创建

)

成功:返回信号量句柄

失败:返回-1

1.2 使用ftok函数根据文件路径名产生一个关键字

key_t ftok(const char *pathname,int proj_id)

路径名称必须有相应权限

1.3 控制信号量

int semctl(

int semid, //信号量集的句柄

int semnum, //信号量集的元素数

int cmd, //命令

/*union senum arg */... //

)

成功:返回相应的值

失败:返回-1

命令详细说明:

cmd: IPC_RMID 删除一个信号量

IPC_EXCL 只有在信号量集不存在时创建

IPC_SET 设置信号量的许可权

SETVAL 设置指定信号量的元素的值为 agc.val

GETVAL 获得一个指定信号量的值

GETPID 获得最后操纵此元素的最后进程ID

GETNCNT 获得等待元素变为1的进程数

GETZCNT 获得等待元素变为0的进程数

union senum 定义如下:

union senum{

int val

struct semid_ds *buf

unsigned short * array

}agc

其中 semid_ds 定义如下:

struct semid_ds{

struct ipc_pem sem_pem //operation pemission struct

time_t sem_otime //last semop()time

time_t sem_ctime //last time changed by semctl()

struct sem *sembase //ptr to first semaphore in array

struct sem_queue *sem_pending//pending operations

struct sem_queue *sem_pending_last//last pending operations

struct sem_undo *undo //undo requests on this arrary

unsigned short int sem_nsems//number of semaphores in set

}

1.4 对信号量 +1 或 -1 或测试是否为0

int semop(

int semid,

struct sembuf *sops, //指向元素操作数组

unsigned short nsops //数组中元素操作的个数

)

结构 sembuf 定义

sembuf{

short int sem_num//semaphore number

short int sem_op//semaphore operaion

short int sem_flg //operation flag

}

三、例子:

2.1 服务器

#include <sys/sem.h>

#include <sys/ipc.h>

#define SEGSIZE 1024

#define READTIME 1

union semun {

int val

struct semid_ds *buf

unsigned short *array

} arg

//生成信号量

int sem_creat(key_t key)

{

union semun sem

int semid

sem.val = 0

semid = semget(key,1,IPC_CREAT|0666)

if (-1 == semid){

printf("create semaphore error\n")

exit(-1)

}

semctl(semid,0,SETVAL,sem)

return semid

}

//删除信号量

void del_sem(int semid)

{

union semun sem

sem.val = 0

semctl(semid,0,IPC_RMID,sem)

}

//p

int p(int semid)

{

struct sembuf sops={0,+1,IPC_NOWAIT}

return (semop(semid,&sops,1))

}

//v

int v(int semid)

{

struct sembuf sops={0,-1,IPC_NOWAIT}

return (semop(semid,&sops,1))

}

int main()

{

key_t key

int shmid,semid

char *shm

char msg[7] = "-data-"

char i

struct semid_ds buf

key = ftok("/",0)

shmid = shmget(key,SEGSIZE,IPC_CREAT|0604)

if (-1 == shmid){

printf(" create shared memory error\n")

return -1

}

shm = (char *)shmat(shmid,0,0)

if (-1 == (int)shm){

printf(" attach shared memory error\n")

return -1

}

semid = sem_creat(key)

for (i = 0i <= 3i++){

sleep(1)

p(semid)

sleep(READTIME)

msg[5] = '0' + i

memcpy(shm,msg,sizeof(msg))

sleep(58)

v(semid)

}

shmdt(shm)

shmctl(shmid,IPC_RMID,&buf)

del_sem(semid)

return 0

//gcc -o shm shm.c -g

}

2.2 客户端

#include <sys/sem.h>

#include <time.h>

#include <sys/ipc.h>

#define SEGSIZE 1024

#define READTIME 1

union semun {

int val

struct semid_ds *buf

unsigned short *array

} arg

// 打印程序执行时间

void out_time(void)

{

static long start = 0

time_t tm

if (0 == start){

tm = time(NULL)

start = (long)tm

printf(" now start ...\n")

}

printf(" second: %ld \n",(long)(time(NULL)) - start)

}

//创建信号量

int new_sem(key_t key)

{

union semun sem

int semid

sem.val = 0

semid = semget(key,0,0)

if (-1 == semid){

printf("create semaphore error\n")

exit(-1)

}

return semid

}

//等待信号量变成0

void wait_v(int semid)

{

struct sembuf sops={0,0,0}

semop(semid,&sops,1)

}

int main(void)

{

key_t key

int shmid,semid

char *shm

char msg[100]

char i

key = ftok("/",0)

shmid = shmget(key,SEGSIZE,0)

if(-1 == shmid){

printf(" create shared memory error\n")

return -1

}

shm = (char *)shmat(shmid,0,0)

if (-1 == (int)shm){

printf(" attach shared memory error\n")

return -1

}

semid = new_sem(key)

for (i = 0i <3i ++){

sleep(2)

wait_v(semid)

printf("Message geted is: %s \n",shm + 1)

out_time()

}

shmdt(shm)

return 0

// gcc -o shmc shmC.c -g

}


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/123810.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-03-14
下一篇2023-03-14

发表评论

登录后才能评论

评论列表(0条)

    保存