纳米材料的次级结构是什么

纳米材料的次级结构是什么,第1张

级次结构纳米材料是由基本纳米结构单元按照一定规律构筑的一种新体系,它包括一维、二维和三维体系,体系中至少有一个维度方向处于纳米尺度范围,所以级次结构纳米材料既具备纳米颗粒的本征特性,又存在由纳米结构组合引起的耦合与协同效应,由此赋予了级次结构纳米材料一系列新颖的物理和化学性质,在磁学、光电器件、能量存储、传感和催化等领域有很广阔的应用前景,因此纳米结构材料吸引了化学家和材料学家的极大兴趣。本论文讨论了水热/溶剂热法合成了珊瑚状四氧化三铁、系列核壳结构的硫化物盒子和花状的氢氧化镍的过程,并探索了目的产物的形成机理,表征了其物理化学性质,讨论了性质与其微观结构的关系。 1.葡萄糖助溶剂热合成级次结构的四氧化三铁 在乙二醇/水的混合溶剂体系中,以七水合硫酸亚铁和氢氧化钾为原料,以葡萄糖分子及其衍生物为铁离子的稳定剂,在200℃的溶剂热条件下合成了珊瑚状的级次结构的四氧化三铁,次级结构的Fe3O4由约粒径10nm的纳米晶聚集而成,其中级次结构的根部是纳米晶颗粒无规则聚集而成的,而由根部生长的枝状结构则是定向聚集的,延长反应时间,级次结构最终解离为离散的Fe3O4纳米颗粒。研究表明在KOH碱性条件下,部分葡萄糖氧化为五碳糖、葡萄糖醛酸和葡萄糖苷等衍生物,而葡萄糖分子及其衍生物拥有的丰富羟基和羧基可与铁离子形成稳定螯合物,随着反应的进行,葡萄糖分子及其衍生物逐渐氧化降解,从而缓慢的释放铁离子形成Fe3O4纳米晶,这个过程为级次结构Fe3O4的形成提供了一个速控步,这样就在溶液中形成了一个浓度梯度,该浓度梯度振荡会导致Fe3O4纳米颗粒聚集成珊瑚状级次结构。在热流方向作用下,级次结构以扇形辐射状向外聚集生长,磁性质测试表明级次结构中颗粒间的耦合效应使Fe3O4聚集体在磁场下表现出了较强的矫顽力。 2.基于Kirkendall效应和Pearson酸碱理论合成金属硫化物纳米盒子 本章讨论了首先在Fe3+的辅助下,利用盐酸刻蚀银纳米团簇制得了作为牺牲模板的氯化银纳米方块,接下来利用溶度积效应将氯化银转化为核壳结构的硫化银纳米盒子,阴离子交换过程中伴随的Kirkendall效应造成了硫化银表面和内部空隙的形成最后利用Pearson软硬酸碱理论,以甲醇为溶剂,三丁基膦为银离子的相转移剂进行阳离子交换反应,该过程表现为局域规整反应,制得了形貌和结构的完整性保持良好的硫化镉、硫化铅、硫化锌和硫铟银。紫外-可见漫反射光谱表明,制备的硫化镉纳米盒子在可见光范围内有较好的吸收效率,这归因于硫化镉盒子特殊的核壳结构和硫化镉颗粒间的电子耦合可产生自缩小带隙。 3.超薄纳米片构成的级次花状β-Ni(OH)2的水热合成及其赝电容和气敏性能 以六水合氯化镍和六亚甲基四胺为原料,水热回流合成了超薄纳米片构成的花状β-Ni(OH)2,TEM与SEM观察发现花状结构是由中心位置向外生长了若干纳米片,纳米片边长大于500nm,XRD和HR-TEM表明纳米片厚度约9.5nm,厚度方向为[001]方向,超薄的纳米片可为离子迁移提供了非常短的扩散通道,可快速响应气体分子的吸附,利于提高样品的电化学活性或气敏性质。电化学测量表明,花状结构β-Ni(OH)2制成的电极在1A/g的电流密度下的比电容为1727F/g,增加电流密度到20A/g,样品的比电容仍然可保持到1235F/g。循环测试表明,经过1000次的充放电后,在1A/g时,其比电容只有1.6%的损耗在20A/g时,其比电容的损耗为27.9%。另外,气敏测试,表明β-Ni(OH)2制成的器件对1ppm的乙醇和丙酮依然有响应信号。

1、粉末X射线衍射法,除了用于对固体样品进行物相分析外,还可用来测定晶体 结构的晶胞参数、点阵型式及简单结构的原子坐标。X射线衍射分析用于物相分析 的原理是:由各衍射峰的角度位置所确定的晶面间距d以及它们的相对强度Ilh是物 质的固有特征。

而每种物质都有特定的晶胞尺寸和晶体结构,这些又都与衍射强 度和衍射角有着对应关系,因此,可以根据衍射数据来鉴别晶体结构。此外,依据XRD衍射图,利用Schercr公式:,K,, (2), Lcos,式中p为衍射峰的半高宽所对应的弧度值K为形态常数,可取0.94或0.89。

为X 射线波长,当使用铜靶时,又1.54187 AL为粒度大小或一致衍射晶畴大小e为 布拉格衍射角。用衍射峰的半高宽FWHM和位置(2a)可以计算纳米粒子的粒径。

2、热分析表征。热分析技术应用于固体催化剂方面的研究,主要是利用热分析跟踪氧化物制 备过程中的重量变化、热变化和状态变化。

采用的热分析技术是在氧化物分析中常用的示差扫描热法和热重法,简称为DSC-TG法。采用STA-449C型综合热分析仪(德,10国耐驰)进行热分析,N2保护器。升温速率为10 C.min 。

3、扫描隧道显微镜法。扫描隧道显微镜有原子量级的高分辨率,其平行和垂直于表面方向的分辨率 分别为0.1 nm和0.01nm,即能够分辨出单个原子,因此可直接观察晶体表面的近原子像其次是能得到表面的三维图像,可用于测量具有周期性或不具备周期性的 表面结构。

通过探针可以操纵和移动单个分子或原子,按照人们的意愿排布分子 和原子,以及实现对表面进行纳米尺度的微加工。

4、透射电子显微镜法。透射电镜可用于观测微粒的尺寸、形态、粒径大小、分布状况、粒径分布范 围等,并用统计平均方法计算粒径,一般的电镜观察的是产物粒子的颗粒度而不 是晶粒度。高分辨电子显微镜(HRTEM)可直接观察微晶结构,尤其是为界面原 子结构分析提供了有效手段。

它可以观察到微小颗粒的固体外观,根据晶体形貌 和相应的衍射花样、高分辨像可以研究晶体的生长方向。测试样品的制备同SEM 样品。本研究采用 JEM-3010E高分辨透射电子显微镜(日本理学)分析晶体结构, 加速电压为200 kV 。

5、X射线能量弥散谱仪法。每一种元素都有它自己的特征X射线,根据特征X射线的波长和强度就能得出定性和定量的分析结果,这是用X射线做成分分析的理论依据。

EDS分析的元 素范围Be4-U9a,一般的测量限度是0.01%,最小的分析区域在5~50A,分析时间几分钟即可。X射线能谱仪是一种微区微量分析仪。

扩展资料:

世界上能作为光催化材料的有很多,包括二氧化钛、氧化锌、氧化锡、二氧化锆、硫化镉等多种氧化物硫化物半导体,其中二氧化钛因其氧化能力强,化学性质稳定无毒,成为世界上最当红的纳米光触媒材料。

在早期,也曾经较多使用硫化镉(CdS)和氧化锌(ZnO)作为光触媒材料,但是由于这两者的化学性质不稳定,会在光催化的同时发生光溶解,溶出有害的金属离子具有一定的生物毒性,故发达国家目前已经很少将它们用作为民用光催化材料,部分工业光催化领域还在使用 [1]  。

性能:由CeO2(70%-90%) ZrO2(30%-10%)组成,形成ZrO2稳定CeO2的均匀复合物,外观呈浅黄色,具有纳米层状结构,在 1000℃ 经4小时老化后,比表面仍较大(>15M# G),因此高温下也能保持较高的活性。

用途:适用于高温催化材料,如汽车尾气催化剂。

参考资料:百度百科-光催化材料

参考资料:CNKI学问-基于二氧化钛空心复合材料的制备及其光催化性能

使用传统硅胶会产生的问题:使用石墨膜的优势:

a、发生硅油分离、污染周围器件 a、可靠性提高

b、产生硅氧烷导致电子器件的接触不良 b、不会发生硅氧烷、不污染周围器件、环保

石墨膜易于加工,便于安装。

人工石墨膜以其高导热高可靠性、轻薄、易于加工、环保等优良特性广泛的应用于新能源、节能改造等重要新兴行业,如光伏逆变器、风力变流器、变频器,并且在LED等电力电子技术领域中有巨大的应用前景。当然,该类产品最广泛用于智能手机,如苹果手机、三星手机中。同时在笔记本、手持设备、通信基地站设备得到商业应用。

(1)以天然鳞片石墨为原料,采用Hummers法制备氧化石墨,并用热剥离成石墨烯,或者利用超声波分散剥离为氧化石墨烯,再化学还原成石墨烯。采用SEM、TEM、HRTEM、XRD和Raman系统考察石墨烯的形貌和结构等性能。

(2)以石墨烯为基体,钛酸四丁酯为钛源,首先采用溶胶-水热法制备了二氧化钛/石墨烯纳米复合材料。利用XRD、SEM、TEM和Raman对二氧化钛/石墨烯纳米复合材料的晶体结构、颗粒形貌和化学组成进行了表征,结果显示合成的二氧化钛纳米晶为锐钛矿结构,结晶状况良好,二氧化钛和石墨烯复合效果较好。研究了纳米晶体的光催化性能,结果表明二氧化钛/石墨烯催化性能较高。

(3)以氧化石墨烯为基体,醋酸锌为锌源,采用溶胶法制备了氧化锌/石墨烯纳米复合材料。结果显示合成的氧化锌纳米晶为六边纤锌矿结构,且是单晶结构,氧化锌和石墨烯复合效果比较理想。并研究了其光催化性能,结果表明石墨烯/氧化锌有较高的催化效率,测定了复合材料的荧光效应,讨论了石墨烯/氧化锌催化效率提高的机理。

(4)以氧化石墨烯为基体,醋酸镉为镉源,硫脲为硫源,采用溶胶法制备了硫化镉/石墨烯纳米复合材料。结果显示合成的硫化镉纳米晶为结构,硫化镉和石墨烯复合效果很好。并研究了其光催化性能,结果表明复合材料有较高的催化效率。

修饰电极能够推广应用于其它生物分子的测定中

具体研究内容包括以下三个部分:

1、采用氧化还原法合成石墨烯,制备石墨烯修饰电极检测DNA四个碱基,电化学研究发现,石墨烯修饰玻碳电极能够实现对DNA四个碱基的同时检测。将石墨烯与碳纳米管、β-环糊精复合,碳纳米管有效的降低了石墨烯的的聚集,研究了石墨烯/碳纳米管/β-环糊精修饰电极的电化学性能,可以用于鸟嘌呤核苷的高灵敏检测,该修饰电极能够推广应用于其它生物分子的测定中。

2、将生物大分子单链DNA(ssDNA)与石墨烯功能化组装,制备的具有生物相容性的ssDNA-石墨烯复合材料在水溶液中能够长期保存不发生沉降,提高了石墨烯在水溶液中的稳定性。ssDNA-石墨烯复合材料比表面积大、生物相容性好,是优异的氧化还原酶固定化材料。将ssDNA-石墨烯复合材料固定葡萄糖氧化酶制备葡萄糖传感器,葡萄糖氧化酶实现了直接电化学并且保持生物活性,电子转移速率为4.14s-1,对葡萄糖检测具有较好的抗干扰性和稳定性。

3、采用原位合成法制备石墨烯-四氧化三铁纳米复合材料,四氧化三铁增加了石墨烯在水中的分散性和稳定性,分别用磁铁和磁强计测试表明石墨烯-四氧化三铁纳米复合材料具有磁性。制备石墨烯-四氧化三铁修饰电极,电化学研究表明,石墨烯-四氧化三铁复合材料对过氧化氢具有催化作用,最低检测限为5.4μmol·L-1,对抗坏血酸和尿酸具有抗干扰性。石墨烯-四氧化三铁纳米复合材料在电化学领域具有潜在的应用前景。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/125785.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-03-15
下一篇2023-03-15

发表评论

登录后才能评论

评论列表(0条)

    保存