用途
高分子聚合物的结构形貌分为微观结构形貌和宏观结构形貌。微观结构形貌指的是高分子聚合物在微观尺度上的聚集状态,如晶态,液晶态或无序态(液态),以及晶体尺寸、纳米尺度相分散的均匀程度等。高分子聚合物的的微观结构状态决定了其宏观上的力学、物理性质,并进而限定了其应用场合和范围。宏观结构形貌是指在宏观或亚微观尺度上高分子聚合物表面、断面的形态,以及所含微孔(缺陷)的分布状况。 观察固体聚合物表面、断面及内部的微相分离结构,微孔及缺欠的分布,晶体尺寸、性状及分布,以及纳米尺度相分散的均匀程度等形貌特点,将为我们改进聚合物的加工制备条件,共混组份的选择,材料性能的优化提供数据。
表征方法及原理
高分子聚合物结构形貌的表征方法
1.X射线衍射
利用X射线的广角或小角度衍射可以获取高分子聚合物的晶态和液晶态组织结构信息。有关内容参见高分子聚合物的晶态和高分子聚合物液晶态栏目。
2.扫描电镜(SEM)
扫描电镜用电子束扫描聚合物表面或断面,在阴极射线管上(CRT)产生被测物表面的影像。对导电性样品,可用导电胶将其粘在铜或铝的样品座上,直接观察测量的表面;对绝缘性样品需要事先对其表面喷镀导电层(金、银或炭)。目前HITATCH有一种台式扫描电镜可以对绝缘样品进行直接观测。
用SEM可以观察聚合物表面形态;聚合物多相体系填充体系表面的相分离尺寸及相分离图案形状;聚合物断面的断裂特征;纳米材料断面中纳米尺度分散相的尺寸及均匀程度等有关信息。
3.透射电镜(TEM)
透射电镜可以用来表征聚合物内部结构的形貌。将待测聚合物样品分别用悬浮液法,喷物法,超声波分散法等均匀分散到样品支撑膜表面制膜;或用超薄切片机将高分子聚合物的固态样样品切成50nm薄的试样。把制备好的试样置于透射电子显微镜的样品托架上,用TEM可观察样品的结构。利用TEM可以观测高分子聚合物的晶体结构,形状,结晶相的分布。高分辨率的透射电子显微镜可以观察到高分子聚合物晶的晶体缺陷。
4.原子力显微镜(AFM)
原子力显微镜使用微小探针扫描被测高分子聚合物的表面。当探针尖接近样品时,探针尖端受样品分子的范德华力推动产生变形。因分子种类、结构的不同,范德华力的大小也不同,探针在不同部位的变形量也随之变化,从而“观察”到聚合物表面的形貌。由于原子力显微镜探针对聚合物表面的扫描是三维扫描,因此可以得到高分子聚合物表面的三维形貌。
原子力显微镜可以观察聚合物表面的形貌,高分子链的构象,高分子链堆砌的有序情况和取向情况,纳米结构中相分离尺寸的大小和均匀程度,晶体结构、形状,结晶形成过程等信息。
5.扫描隧道显微镜(STM)
同原子力显微镜类似,扫描隧道显微镜也是利用微小探针对被测导电聚合物的表面进行扫描,当探针和导电聚合物的分子接近时,在外电场作用下,将在导电聚合物和探针之间,产生微弱的“隧道电流”。因此测量“隧道电流”的发生点在聚合物表面的分布情况,可以“观察”到导电聚合物表面的形貌信息。
扫描隧道显微镜可以获取高分子聚合物的表面形貌,高分子链的构象,高分子链堆砌的有序情况和取向情况,纳米结构中相分离尺寸的大小和均匀程度,晶体结构、形状等。和原子力显微镜相比,扫描隧道显微镜只能用于导电性的聚合物表面的观察。
6.偏光显微镜(PLM)
利用高分子液晶材料的光学性质特点,可以用偏光显微镜观测不同高分子液晶,由液晶的织构图象定性判断高分子液晶的类型。
7.光学显微镜
金相显微镜可以观测高分子聚合物表面的亚微观结构,确定高分子聚合物内和微小缺陷。体视光学显微镜通常被用于观测高分子聚合物体表面、断面的结构特征,为优化生产过程,进行损伤失效分析提供重要的信息。
使用体视显微镜时需要注意在取样时不得将进一步的损伤引入受观测的样品。使用金相显微镜时,受测样品需要首先在模具中固定,然后用树脂浇铸成圆柱形试样。圆柱的地面为受测面。受测面在打磨、抛光成镜面后放置于金相显微镜上。高分子聚合物亚微观结构形貌的清晰度取决于受测面抛光的质量。
所用仪器
x射线衍射仪
高分辨透射/扫描电子显微镜(TEM/SEM)
原子力显微镜
扫描隧道显微镜(STM)
偏光显微镜(PLM)
用途
高分子聚合物的结构形貌分为微观结构形貌和宏观结构形貌。微观结构形貌指的是高分子聚合物在微观尺度上的聚集状态,如晶态,液晶态或无序态(液态),以及晶体尺寸、纳米尺度相分散的均匀程度等。高分子聚合物的的微观结构状态决定了其宏观上的力学、物理性质,并进而限定了其应用场合和范围。宏观结构形貌是指在宏观或亚微观尺度上高分子聚合物表面、断面的形态,以及所含微孔(缺陷)的分布状况。 观察固体聚合物表面、断面及内部的微相分离结构,微孔及缺欠的分布,晶体尺寸、性状及分布,以及纳米尺度相分散的均匀程度等形貌特点,将为我们改进聚合物的加工制备条件,共混组份的选择,材料性能的优化提供数据。
表征方法及原理
高分子聚合物结构形貌的表征方法
1.X射线衍射
利用X射线的广角或小角度衍射可以获取高分子聚合物的晶态和液晶态组织结构信息。有关内容参见高分子聚合物的晶态和高分子聚合物液晶态栏目。
2.扫描电镜(SEM)
扫描电镜用电子束扫描聚合物表面或断面,在阴极射线管上(CRT)产生被测物表面的影像。对导电性样品,可用导电胶将其粘在铜或铝的样品座上,直接观察测量的表面;对绝缘性样品需要事先对其表面喷镀导电层(金、银或炭)。目前HITATCH有一种台式扫描电镜可以对绝缘样品进行直接观测。
用SEM可以观察聚合物表面形态;聚合物多相体系填充体系表面的相分离尺寸及相分离图案形状;聚合物断面的断裂特征;纳米材料断面中纳米尺度分散相的尺寸及均匀程度等有关信息。
3.透射电镜(TEM)
透射电镜可以用来表征聚合物内部结构的形貌。将待测聚合物样品分别用悬浮液法,喷物法,超声波分散法等均匀分散到样品支撑膜表面制膜;或用超薄切片机将高分子聚合物的固态样样品切成50nm薄的试样。把制备好的试样置于透射电子显微镜的样品托架上,用TEM可观察样品的结构。利用TEM可以观测高分子聚合物的晶体结构,形状,结晶相的分布。高分辨率的透射电子显微镜可以观察到高分子聚合物晶的晶体缺陷。
4.原子力显微镜(AFM)
原子力显微镜使用微小探针扫描被测高分子聚合物的表面。当探针尖接近样品时,探针尖端受样品分子的范德华力推动产生变形。因分子种类、结构的不同,范德华力的大小也不同,探针在不同部位的变形量也随之变化,从而“观察”到聚合物表面的形貌。由于原子力显微镜探针对聚合物表面的扫描是三维扫描,因此可以得到高分子聚合物表面的三维形貌。
原子力显微镜可以观察聚合物表面的形貌,高分子链的构象,高分子链堆砌的有序情况和取向情况,纳米结构中相分离尺寸的大小和均匀程度,晶体结构、形状,结晶形成过程等信息。
5.扫描隧道显微镜(STM)
同原子力显微镜类似,扫描隧道显微镜也是利用微小探针对被测导电聚合物的表面进行扫描,当探针和导电聚合物的分子接近时,在外电场作用下,将在导电聚合物和探针之间,产生微弱的“隧道电流”。因此测量“隧道电流”的发生点在聚合物表面的分布情况,可以“观察”到导电聚合物表面的形貌信息。
扫描隧道显微镜可以获取高分子聚合物的表面形貌,高分子链的构象,高分子链堆砌的有序情况和取向情况,纳米结构中相分离尺寸的大小和均匀程度,晶体结构、形状等。和原子力显微镜相比,扫描隧道显微镜只能用于导电性的聚合物表面的观察。
6.偏光显微镜(PLM)
利用高分子液晶材料的光学性质特点,可以用偏光显微镜观测不同高分子液晶,由液晶的织构图象定性判断高分子液晶的类型。
7.光学显微镜
金相显微镜可以观测高分子聚合物表面的亚微观结构,确定高分子聚合物内和微小缺陷。体视光学显微镜通常被用于观测高分子聚合物体表面、断面的结构特征,为优化生产过程,进行损伤失效分析提供重要的信息。
使用体视显微镜时需要注意在取样时不得将进一步的损伤引入受观测的样品。使用金相显微镜时,受测样品需要首先在模具中固定,然后用树脂浇铸成圆柱形试样。圆柱的地面为受测面。受测面在打磨、抛光成镜面后放置于金相显微镜上。高分子聚合物亚微观结构形貌的清晰度取决于受测面抛光的质量。
所用仪器
x射线衍射仪
高分辨透射/扫描电子显微镜(TEM/SEM)
原子力显微镜
扫描隧道显微镜(STM)
偏光显微镜(PLM)
AbstractThe purpose of this article first use of UV-phase polymerization mixed system (photopolymerization monomer (C6M) / to the out-LCD (SLC1717) / chiral compounds (CB15) /-initiator (651) / nano-SiO2)
A phase separation, to maintain the C6M the polymer matrix for the stability of cholesteric texture of film material, and to study its performance. The second is a study SiO2 / LCD complex system, in this system, SiO2 particles of the compound after the hand-modified, because the particles, the surface of the electric field, SiO2 particles can promote the hands of mobile centres, resulting SiO2 / LCD complex system of pitch gradient, to create this new type of wide-band reflection of functional materials.
Using polarized light microscopy (POM) of the optical observation of liquid crystal patternsspectrophotometer measured using liquid crystal composite transmission spectrum of the use of LCD comprehensive test to measure the cholesteric liquid crystal electro-optical properties of the use of scanning electron microscopy (SEM) to observe Polymer network topography. In this study involved liquid crystal composite materials in various components in the performance of its photoelectric effect and doping different types of different concentrations (0% -4%) of the modified nanoparticles in SiO2 negative LCD, Targeting an excellent electro-optical properties of composite materials.
SEM主要优势是观察粗糙的原始表面,一般无需对样品表面进行特殊处理,在微区属于无损分析。如果看金相,需要从形状形貌上来鉴别是什么相,肯定需要腐蚀,因为SEM成像,需要有确切的形貌存在,例如镜面抛光后,图像没有形貌反差,也就无从鉴定相。有时候看夹杂物则无需腐蚀,镜面抛光后,直接使用BSE信号成像,会清晰的表现Z反差。但一般的Z反差和相反差并不完全相符。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)