如下参考:
1.首先选择最后一个标准偏差来显示复制的单元格,如下图所示。
2.点击[start]-[autosum]旁边的三角形,就会出现一个下拉菜单。点击【其他功能】如下图所示。
3.出现[insertfunction]窗口,点击[selectcategory],选择[all],找到standarddeviation[STDEVP]函数,如下图所示。
4.单击ok后,单击箭头所指的位置并选择数据,如下图所示。
5.选择后,点击“ok”,可以看到计算出的标准差,如下图所示。
SD 是标准偏差,是看你样本中观测值的变异程度的;SEM 是均值标准误,值越小,说明你的样本观测值越接近总体样本,说明你的观测值具有代表性,值越大,反之。MSE 是做完方差分析所得出来的,通过MSE可计算SEM,SEM=MSE/根号n;这里的n代表你观测值当中的重复数。一、意思不同
mean都是平均数。
SD全称standard deviation标准差,又常称均方差,是离均差平方的算术平均数的平方根,用σ表示。
SEM是standard error of mean是平均数的抽样误差,反应平均数的抽样准确性。
二、用法不同
SEM计估计值的准确性无法度量,但利用统计学方法可以度量精确性。试验的误差来源有系统误差和抽样误差,系统误差易于克服,抽样误差由许多无法控制的内因和外因,带有偶然性,在试验中即使十分小心也难以消除,但可以通过增加重复数来来降低。
对于重复数少的小样本(n≤30)用mean ± S.E.M.,重复数多的大样本(n>30)用 mean ± SD。
三、类型不同
标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。
标准误是由样本的标准差除以样本容量的开平方来计算的。标准误更大的是受到样本容量的影响。样本容量越大,标准误越小,那么抽样误差就越小,就表明所抽取的样本能够较好地代表总体。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)