电工所:二维石墨烯MnO异质结构实现高性能柔性固态锂离子电容器

电工所:二维石墨烯MnO异质结构实现高性能柔性固态锂离子电容器,第1张

成果简介

精细的结构工程被广泛认为是提高锂存储转换型负极材料电化学性能的有力工具。 本文,中国科学院电工研究所张熊、马伟衍和中国科学院中国科学院大连化学物理研究所吴忠帅等研究人员在《Adv Funct Mater》期刊 发表名为“2D Graphene/MnO Heterostructure with Strongly Stable Interface Enabling High-Performance Flexible Solid-state Lithium-Ion Capacitors”的论文, 研究提出了一种通用的静电自组装策略,用于在带负电荷的还原氧化石墨烯上原位合成层状MnO纳米(rGO/MnO)。

通过操作实验表征和理论计算证实了rGO/MnO异质结构的强界面异质结构和稳健的锂存储机制与快速 Li +扩散动力学和高锂吸附能力有关。由于快速的电荷转移、丰富的反应位点和稳定的异质结构,所合成的rGO/MnO负极具有高容量(0.1Ag-1时为860mAhg-1 )、优异的倍率性能(211mAhg-1 at 10 Ag -1 )和循环稳定性。值得注意的是,组装后的活性炭//rGO/MnO固态锂离子电容器(LICs)的柔性软包电池具有194 Wh kg -1的出色能量密度和40.7 kW kg -1的功率密度,两者均是迄今为止报道的最高柔性固态LIC之一。此外,LICs 具有超长的使用寿命,在 10000 次循环后保留率约为 77.8%,并且具有非凡的安全性,表明其具有巨大的实际应用潜力。

图文导读

图1、a) rGO/MnO异质结构的合成路线示意图。b) rGO 和 c) rGO/MnO 的 SEM 图像。d) rGO/MnO 中C、O 和Mn元素的EDS映射图像。e,f) rGO/MnO的TEM图g) HRTEM图像(插入:SAED)。

图2、a) rGO、MnO和rGO/MnO的XRD图谱。b-d) rGO/MnO 的 Mn 2p、C 1s 和 O 1s 的高分辨率 XPS 光谱。e) rGO、MnO和rGO/MnO的FTIR曲线。f) XAS 的 O K 边,g) EXAFS 光谱的 Mn K 边,和 h) MnO 和 rGO/MnO 的 WT-EXAFS 曲线。

图3、rGO/MnO异质结构的电化学性能

图4、a,b) Li +在 a) rGO 和 b) rGO/MnO 上的吸附能和相应的吸附位点。c) 计算的 rGO 和 rGO/MnO 中从初始状态 (IS) 到过渡状态 (TS) 并最终到最终状态 (FS) 的锂扩散势垒。

图5、固态柔性 AC//rGO/MnO LIC 软包电池的电化学性能

图6、a)AC//rGO/MnO LIC软包电池在2 A g -1的不同弯曲条件下2000次循环的柔性性能测试。b) 柔性固态 LIC 软包电池为 100 个红色 LED 供电。c,d) 用于检查柔性固态 LIC 软包电池安全性的测试。

小结

总之,提出了一种通用的界面工程路线,将 卷心菜状MnO纳米锚定在3D rGO“土壤”内,作为 LICs 的优良阳极。这项工作为具有高能量/功率输出的柔性 LIC 器件的实际应用提供了一种可行且可扩展的基于金属氧化物/石墨烯的电极设计策略。

文献:

https://doi.org/10.1002/adfm.202202342

您好!

bachier(站内联系TA)不是个笑话,SEM表征石墨烯的也不少,我也不做石墨烯,我们这一堆人做,他们都用SEM。石墨烯是导电的材料,不用喷金fansire(站内联系TA)喷了也没关系吧,我记得实验室的石墨烯SEM也是喷了金的xiejf(站内联系TA)导电性好,不要喷金。喷了反而会影响表征的准确度wulishi8(站内联系TA)石墨烯是导电的,不需要喷金。

不喷也行,看得还行,GO和RGO的导电性够了神魔流转(站内联系TA)GO 和石墨烯做SEM都是不必要的,AFM和TEM有用,但SEM是真心没用,除了做负载或特定形貌时可能需要观察下。jiji188(站内联系TA)不喷也行,我们实验室一般都是滴在ITO上直接照SEM的,效果还行。梦日边(站内联系TA)我做的表征时喷金了,看了还挺清楚,没试过不喷金zmcai(站内联系TA)你的SEM是不是有问题,我们一般是放在硅片上,硅片是半导体,有导电能里,但是你用二氧化硅行么我们一般都是直接涂在做SEM的硅片上拍电极,不用喷金也可以。如果你喷金了,导电性会好些,但是如果没控制好,可能会看到大颗粒的金,也是会影响表征的。zhouzhixin(站内联系TA)不需要喷金的,直接滴到硅片上的,这个主要还得看你的石墨烯粒径大小,太小的话看不出来什么有用的信息fluoro(站内联系TA)我们表征石墨都不喷,效果还挺清晰的苏惜不若(站内联系TA)不用喷金的,导电性很好的。yjiaahedu(站内联系TA)SEM可以表征,也不需要蒸金,若观察到褶皱的话,说明层数较少,但是无法确定是石墨烯还是石墨片,需要HRTEM和拉曼光谱(波数50-3000):Dyy秋水(站内联系TA)哈哈,不用喷金,只要你的基底能够导电就可以了,如果在二氧化硅基底上,SEM的图是黑色的,不过放大以后还是能看到一些细节的威威号(站内联系TA)不用喷金,把石墨烯用水分散,足够稀(几乎看不到颜色),超声。

为你解除疑惑是我的快乐!

固溶体是指溶质原子溶入溶剂晶格中而形成的单一、均匀的晶态固体且仍保持溶剂类型的合金相。固溶体半导体材料是指某些元素半导体或者化合物半导体相互溶解而形成的一种具有半导体性质的固态溶液材料,又称为混晶半导体或者合金半导体。两种化合物若离子半径相近、晶格结构相似则可以通过调节比例制备带隙连续变化的可见光响应的光催化剂。由于硫化物半导体拥有较窄的带隙和较高的稳定性等优点,近年来备受关注。硫化锌(ZnS)是一种典型的Ⅱ-Ⅵ型半导体材料,由于其优异的氧化能力和低的二次污染,受到了人们的广泛关注。然而,ZnS由于其具有宽的直接带隙(3.6eV)仅在紫外光区具有活性,且由于较快的光生电子-空穴复合率,其光催化效率还不够高。与窄带隙半导体构建异质结是拓宽宽带隙半导体的可见光吸收以及光催化性能的一种有效方法。MoS2作为一种新兴的光催化剂具有禁带窄、边缘结构复杂、比表面积大、高不饱和性能等特点,合成ZnS-MoS2异质结光催化剂可以抑制光生电子-空穴的复合,从而提高光催化活性。然而,异质结的晶格和能带结构匹配较差。半导体异质结固溶体可以调节固溶体的晶格常数和能带结构匹配的能带结构,是一种避免晶格失配引起的界面应力的有效途径。因而本课题组合成了一系列的ZnS-MoS2固溶体,其光催化活性远高于纯ZnS和MoS2,但由于ZnS-MoS2固溶体的光催化活性较差,其性能仍不理想。因此,对ZnS-MoS2固溶体光催化剂进行修饰进而提高其光催化效率是非常必要的。

石墨烯是由sp2杂化的苯六元环组成的二维(2D)周期性蜂窝状晶格结构,是目前最理想的二维纳米材料。在室温下石墨烯具有在优异的电荷载体、优良的热导率、高比表面积和良好的化学稳定性等,能促进ZnS-MoS2固溶体光生电子-空穴的分离、转移和迁移,抑制光载流子的复合;此外,石墨烯能吸附大量的污染物,为光催化反应提供更多更理想的反应位点,且能够抑制ZnS-MoS2纳米颗粒团聚,使其均匀的生长在石墨烯薄膜上,因此,结合固溶体的优点和石墨烯优异的性能,我们尝试制备了一种新型的rGO/ZnS-MoS2三元固溶体促进电荷分离以及增强稳定性。

技术实现要素:

ZnS-MoS2纳米颗粒较大且接触紧密,容易团聚,比表面积较小,提供的反应活性位点较少,容纳的污染物分子有限,进而造成光催化效率较低,本发明的目的在于针对现有的不足,提出一步溶剂热法制备具有可见光催化活性的rGO/ZnS-MoS2纳米固溶体光催化剂,rGO的引入一方面可作为电子载体促进光生电子-空穴的分离、转移和迁移,从而抑制光载流子的复合率;另一方面石墨烯的加入能抑制ZnS-MoS2纳米颗粒聚合,使ZnS-MoS2纳米颗粒能够均匀地生长在石墨烯薄膜上,为光催化反应提供更多更理想的反应位点。此外,这种 rGO/ZnS-MoS2纳米固溶体光催化剂的禁带宽度较窄,且具有较大的比表面积,在可见光下有较强的光吸收和光催化能力,提高了对光的利用效率,并且具有较高的稳定性和再生能力。

本发明是通过以下技术方案实现的。一种具有可见光催化活性的石墨烯/ZnS-MoS2纳米固溶体光催化剂的方法,其步骤如下:

一种具有可见光催化活性的石墨烯/ZnS-MoS2纳米固溶体光催化剂的方法,其特征步骤如下:

1)首先用改良Hummers法制备出氧化石墨烯,然后将氧化石墨烯分散到有机溶剂中超声至均匀溶液,超声时间30-60min;

2)以无机锌盐、无机钼盐和硫源作为原料,将它们溶解到有机溶液中,并加入提前制备好的石墨烯溶液;

3)将混合溶液转移到反应釜中,在180-220℃条件下反应24小时;

4)反应结束后,将反应物用去离子水和无水乙醇分别洗涤、离心数次,所得产物在60-100 ℃下真空干燥6-24小时,即得具有可见光催化活性的rGO/ZnS-MoS2纳米固溶体光催化剂。

所述无机锌盐为醋酸锌、氯化锌、硝酸锌和硫酸锌中的一种或几种。

所述无机钼盐为钼酸钠、钼酸铵和磷钼酸中的一种或几种。

所述硫源为硫代乙酰胺、硫脲和Na2S中的一种或几种。

所述有机溶剂为乙醇、丙醇、丁醇、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、乙二醇、丙二醇或丁二醇中的一种或几种。

所述无机锌盐与无机钼盐的摩尔比为20:1~40:1。

所述无机锌盐与硫源的摩尔比为1:2~1:8。

所述石墨烯与ZnS-MoS2的质量百分比为5%~14%。

本发明制备的石墨烯/ZnS-MoS2纳米固溶体光催化剂,处理废水在可见光照射下进行。

本发明制备rGO/ZnS-MoS2纳米固溶体光催化剂的优点:

(1)本发明制备方法制得的rGO/ZnS-MoS2纳米固溶体光催化剂具有独特的表面结构和形貌。

(2)本发明的一步溶剂热法制备一种具有可见光催化活性的石墨烯/ZnS-MoS2纳米固溶体光催化剂较为蓬松具有更大的比表面积,较窄且可连续调节的禁带宽度,能有效地使光生电子-空穴分离、迁移,在可见光下有较强的光吸收和光催化能力,并具有着较高的稳定性和再生性能,可见光照射下可以高效处理实际废水,去除率可达到74.05%。

附图说明

图1为本发明的实施例1所制备的rGO/ZnS-MoS2纳米固溶体光催化剂(a)和单纯的 ZnS-MoS2对比样品(b)的XRD图谱,由图可知,rGO/ZnS-MoS2和ZnS-MoS2的X射线衍射数据相符合,表明石墨烯的负载不影响ZnS-MoS2的晶相,没有出现石墨烯的衍射峰表明由于硫化锌/硫化钼对石墨烯片层的修饰,打乱了石墨烯的有序排列结构。

图2为本发明的实施例1所制备的rGO/ZnS-MoS2SEM图,由图可知ZnS-MoS2纳米粒子能均匀地生长在石墨烯薄膜上并形成了的形貌,实现石墨烯与ZnS-MoS2纳米粒子之间的有效键合。

图3为本发明的实施例1所制备的rGO/ZnS-MoS2纳米固溶体光催化剂(a)和纯ZnS-MoS2样品(b)的氮气吸附-脱附等温线,由图可知,rGO/ZnS-MoS2和纯ZnS-MoS2的氮气吸附-脱附等温线都属IUPAC分类中的IV型,H3滞后环,但rGO/ZnS-MoS2固溶体光催化剂的比表面积接近31.6m2/g,纯ZnS-MoS2的比表面积为18.7m2/g,rGO/ZnS-MoS2纳米固溶体光催化剂的比表面积远大于纯ZnS-MoS2的比表面积。

图4为本发明的实施例1所制备的rGO/ZnS-MoS2纳米固溶体光催化剂(a)和纯ZnS-MoS2 (b)光降解邻硝基苯酚曲线,由图可知,rGO/ZnS-MoS2固溶体光催化剂的催化活性高于纯 ZnS-MoS2。

图5为本发明的实施例1所制备的rGO/ZnS-MoS2纳米固溶体光催化剂在可见光照射下处理实际药物废水的曲线,由图可知,rGO/ZnS-MoS2固溶体光催化剂可以高效处理实际药物废水,在可见光下实际药物废水的COD去除率高达74.05%。

具体实施方式

以下实施旨在说明本发明而不是对本发明的进一步限定。

实施例1

(1)以石墨粉为原料,采用Hummers方法合成氧化石墨烯,然后取0.06787g氧化石墨烯到10mL N,N-二甲基甲酰胺溶液中,超声30min备用。

(2)将6.0mmol醋酸锌,0.2mmol钼酸钠,13.3mmol硫代乙酰胺,加入到40mL N,N- 二甲基甲酰胺溶液中并搅拌至溶液透明后加入上述石墨烯溶液。

(3)将溶液转移到100mL反应釜中,210℃,反应时间为24小时。

(4)将反应后的样品离心并用去离子水和乙醇洗涤数次,所得样品在60℃下真空干燥 12小时后研磨。所得产物为rGO/ZnS-MoS2纳米固溶体光催化剂。

实施例2

(1)以石墨粉为原料,采用Hummers方法合成氧化石墨烯,然后称取0.04936g氧化石墨到10mL乙二醇溶液中,超声40min备用。

(2)将6.0mmol氯化锌,0.2mmol钼酸钠,13.3mmol硫代乙酰胺,加入到40mL乙二醇溶液中并搅拌至溶液透明后加入上述石墨烯溶液。

(3)将溶液转移到100mL反应釜中,200℃,反应时间为24小时。

(4)将反应后的样品离心并用去离子水和乙醇洗涤数次,所得样品在60℃下真空干燥 12小时后研磨。所得产物为rGO/ZnS-MoS2纳米固溶体光催化剂。

实施例3

(1)以石墨粉为原料,采用Hummers方法合成氧化石墨烯,然后称0.06787g氧化石墨烯分散到10mL乙醇溶液中,超声60min备用。

(2)将5.0mmol硝酸锌,0.25mmol钼酸钠,11.5mmol硫化钠,加入到40mL乙醇溶液中并搅拌至溶液透明后加入上述石墨烯溶液。

(3)将溶液转移到100mL反应釜中,220℃,反应时间为24小时。

(4)将反应后的样品离心并用去离子水和乙醇洗涤数次,所得样品在60℃下真空干燥 12小时后研磨。所得产物为rGO/ZnS-MoS2纳米固溶体光催化剂。

实施例4

(1)以石墨粉为原料,采用Hummers方法合成氧化石墨烯,然后取0.04936g氧化石墨烯分散到10mL丁醇溶液中,超声30min备用。

(2)将5.0mmol硝酸锌,0.25mmol磷酸钠,11.5mmol硫化钠,加入到40mL丁醇溶液中并搅拌至溶液透明后加入上述石墨烯溶液。

(3)将溶液转移到100mL反应釜中,200℃,反应时间为24小时。

(4)将反应后的样品离心并用去离子水和乙醇洗涤数次,所得样品在60℃下真空干燥 12小时后研磨。所得产物为rGO/ZnS-MoS2纳米固溶体光催化剂。

实施例5

(1)以石墨粉为原料,采用Hummers方法合成氧化石墨烯,然后称取0.04936g氧化石墨烯分散到10mL丁醇溶液中,超声40min备用。

(2)将6.0mmol硝酸锌,0.2mmol钼酸钠,13.3mmol硫脲,加入到40mL丁醇溶液中并搅拌至溶液透明后加入上述石墨烯溶液。

(3)将溶液转移到100mL反应釜中,220℃,反应时间为24小时。

(4)将反应后的样品离心并用去离子水和乙醇洗涤数次,所得样品在100℃下真空干燥 8小时后研磨。所得产物为rGO/ZnS-MoS2纳米固溶体光催化剂。

实施例6

(1)以石墨粉为原料,采用Hummers方法合成氧化石墨烯,然后取0.05553g氧化石墨烯分散到10mL丁醇溶液中,超声50min备用。

(2)将5.0mmol醋酸锌,0.14mmol钼酸钠,11mmol硫化钠,加入到40mL丁醇溶液中并搅拌至溶液透明后加入上述石墨烯溶液。

(3)将溶液转移到100mL反应釜中,210℃,反应时间为24小时。

(4)将反应后的样品离心并用去离子水和乙醇洗涤数次,所得样品在100℃下真空干燥 8小时后研磨。所得产物为rGO/ZnS-MoS2纳米固溶体光催化剂。

实施例7

(1)以石墨粉为原料,采用Hummers方法合成氧化石墨烯,然后称取0.05553g氧化石墨烯分散到10mLN,N-二甲基甲酰胺溶液中,超声30min备用。

(2)将6.0mmol醋酸锌,0.2mmol磷酸钼,13.3mmol硫化钠,加入到40mL N,N-二甲基甲酰胺溶液中并搅拌至溶液透明后加入上述石墨烯溶液。

(3)将溶液转移到100mL反应釜中,200℃,反应时间为24小时。

(4)将反应后的样品离心并用去离子水和乙醇洗涤数次,所得样品在100℃下真空干燥 8小时后研磨。所得产物为rGO/ZnS-MoS2纳米固溶体光催化剂。

实施例8

(1)以石墨粉为原料,采用Hummers方法合成氧化石墨烯,然后取0.04936g氧化石墨烯分散到10mLN,N-二甲基乙酰胺溶液中,超声40min备用。

(2)将5.0mmol硫酸锌,0.25mmol磷酸钼,11.5mmol硫脲,加入到40mL N,N-二甲基乙酰胺溶液中并搅拌至溶液透明后加入上述石墨烯溶液。

(3)将溶液转移到100mL反应釜中,210℃,反应时间为24小时。

(4)将反应后的样品离心并用去离子水和乙醇洗涤数次,所得样品在100℃下真空干燥 8小时后研磨。所得产物为rGO/ZnS-MoS2纳米固溶体光催化剂。

实施例9

(1)以石墨粉为原料,采用Hummers方法合成氧化石墨烯,然后取0.05553g氧化石墨烯分散到10mL丙二醇溶液中,超声30min备用。

(2)将6.0mmol氯化锌,0.2mmol钼酸铵,13.3mmol硫脲,加入到40mL丙二醇溶液中并搅拌至溶液透明后加入上述石墨烯溶液。

(3)将溶液转移到100mL反应釜中,200℃,反应时间为24小时。

(4)将反应后的样品离心并用去离子水和乙醇洗涤数次,所得样品在100℃下真空干燥 8小时后研磨。所得产物为rGO/ZnS-MoS2纳米固溶体光催化剂。

不局限于此,任何不经过创造性劳动想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书所限定的保护范围为准。

再多了解一些


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/130319.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-03-16
下一篇2023-03-16

发表评论

登录后才能评论

评论列表(0条)

    保存