哪位可传给我一份FEI Quanta 450 环境扫描电子显微镜作用原理? 急需 谢谢!

哪位可传给我一份FEI Quanta 450 环境扫描电子显微镜作用原理? 急需 谢谢!,第1张

传统扫描电子显微镜(SEM)配有接收二次电子的探头(ET),它的工作原理:ET探头通过接收样品的二次电子,经光电倍增管放大后,信号再输到前置放大器放大。最后去调制显象管或其它成象系统(见图1);但它

只能在高真空下工作,因此只光电倍增管图1能观察不含水分的固体导电样品相通过脱水、喷金属化等处理后的生物样品。对于含有适量水分的新鲜生物等样品,传统扫描电镜就无法满足要求。因此,人们渴望既能在高真空下又能在低真空下甚至能在大气环境下工作的扫描电子显微镜。二十世纪八十年代,随着真空系统中多重限压狭缝技术开发成功(即将样品室与柱形导管之间的真空隔开)和气体二次电子探头的研究成功。美国E1ectro Scan公司于1990年推出第一台商用环境电子显微镜(ESEM)。环境扫描电子显微镜的诞生,把人们引入了一个全新的形态观察的领域。

2环境扫描电镜的工作原理和特点

2.1 工作原理

环境扫描电镜有二个探头(ET和GSED),分别在高真空和低真空下工作。因此,它除了保持传统扫描电镜功能外。由于增加了GSED探头,就增加了新的功能。GSED可以工作在低真空(约达20Torr)下,它安装在物镜极靴底部,探头上施以数百伏的正电压以吸引由样品激发出的二次电子,二次电子在探头电场中被加速并碰撞气体分子使其电离,部分气体电离成正离子和电子(这些电子被称为气体二次电子),这种加速一电离过程的不断重复,使初始二次电子信号呈连续比例级数放大,GSED探头接收这些信号并将其直接传到电子放大器放大成电信号去调制显象管或其它成像系统(见图2)

2.2工作特点

(1) GSED探头不含高压元件,可以在低真空的多气体环境中工作,故可以观察含有适量水分的生物样品;(2)信号的初始放大靠电离气体分子进行,不再需要光电倍增管,GSED探头对光、对热不再敏感,故可以观察发光材料和使用热台;(3)当绝缘样品表面沉积电荷时,形成的电场会吸引被电离的气体中的正离子而被中和。故非导体样品表面不再进行金属化喷涂处理,从而更好地观察样品表面的细节;也节省了处理样品的中间环节; (4)由于GSED探头弥补丁ET探头的缺点,使得环境扫描电子显微镜的运用范围大大扩展。样品室内的适量气体对其工作性能不但没有影响,反而有益,气体越容易电离,所获得的放大增益越高,改变探头的偏置电压即可调节增益或适应于不同的气体。由于水蒸汽获取方便,没有毒性,容易电离,成像性能佳,因此成为员常用的气体。但GSED由于在物镜极靴下面,正对着样品,被放射电子由于能量大,能直接射向GSED探头,因此图像背景较深,对图像的对比度会有些影响。

3环境扫描电镜的应用

环境扫描电子显微镜除了具有传统扫描电子显微镜所有功能外,还具有在低真空下观察含有一定水份的样品和非导体样品。特别对生物样品的观察,省去了脱水、喷金属化等处理的中间制样环节,使得样品能保持原有的微观形貌,这对于观察研究生物微观形貌是非常重要的环节。在传统扫描电子显微镜中,动物、植物样品不通过脱水等处理是不能观察的。动、植物样品通过脱水等处理后,样品的微观形貌会产生变化,这是不可避免的,这会影响人们对生物微观形态的认识。但在环境扫描电镜中,动、植物样品可以不需要脱水等处理,使样品少变形或不变形,因而更真实地反映样品的微观形貌。环境扫描电镜在低真空下,员适用于观察那些具有一定强度和含水量很低的样品。比如植物的叶子,动物中的昆虫,作物的籽粒,含有结晶水的固体材料等。随着环境扫描电子显微镜实验技术条件的不断探索和完善,它在生物医学、林学、材料、化工、石油地质、建材、食品、轻工等研究领域会得到越来越广泛的应用。

图3、图4所示是纤维非导体样品在低真空下的图象。在真空度5.2Torr,加速电压15kV,放大倍数1000倍和4000倍下,非导体材料纤维样品的图象清晰,样品表面没有放电现象;而在高真空下,图象放电非常严重,无法成象。

图5所示是头发在低真空下的图象。在真空度2.5Torr,加速电压20kV,放大倍数500倍下,样品不需任何处理,图象很清晰,头发的鱼鳞片的细节很清楚。

图6所示是有湿度的混凝土在低真空下的图象。在真空度0.4Torr,加速电压20kV,放大倍数1480倍下,混凝土的颗粒清楚,没有产生放电。

对于新鲜含有适量水分的生物、动物样品的观察是环境扫描电子显微镜最大的特点。这方面的应用工作已在其他的实验室做了不少,相关的期刊发表了不少的这方面文章。

4实验过程一些问题的认识

虽然环境扫描电镜可以观察含水分的样品,但要出好每种样品的图象,难度还是比较大,必须花费一些时间来摸索,积累更多的经验,才能出好图象,特别在低真空下。在正确认识ESEM工作原理的基础上,在具体运用ESEM观察新鲜生物样品和其它含水样品时,掌握一些操作技术要领是非常必要的。例如:

(1)由于环境扫描电镜的低真空下并非真正的大气压力,样品的水分蒸发问题还是存在,观察时间若太久,势必造成样品因水分蒸发而使样品变形因此,观察和记录操作要尽可能地快。

(2)虽然ESEM的样品台一次可以同时装多个样品,但在观察含水分的生物样品或在真空下易变形的样品时,建议最好一次故人一个样品。

(3)在低真空下工作时,要接上Peltier冷台,该冷台的温度与样品室压力的设置很重要。要保持样品的新鲜度,保持样品的生活状态,温度和压力的设置必须使样品所含游离水处于临界状态,即水分不蒸发也不凝结,但针对不同生物样品的温度与压力条件是不相同的,这需要在实践中摸索并积累经验。

(4)在低真空下工作时,注意摸索样品最佳的工作距离。若工作距离远了,信号接收效果差;距离过近,气流也会影响信号接收效果。

(5)由于在低真空下观察时,样品一般高物镜极靴较近,所以要求样品表面高度差不能太大,特别是大样品,以免在移动样品过程中碰到物镜极靴。

SEM、TEM、XRD、AES、STM、AFM的区别主要是名称不同、工作原理不同、作用不同、

一、名称不同

1、SEM,英文全称:Scanningelectronmicroscope,中文称:扫描电子显微镜。

2、TEM,英文全称:TransmissionElectronMicroscope,中文称:透射电子显微镜。

3、XRD,英文全称:Diffractionofx-rays,中文称:X射线衍射。

4、AES,英文全称:AugerElectronSpectroscopy,中文称:俄歇电子能谱。

5、STM,英文全称:ScanningTunnelingMicroscope,中文称:扫描隧道显微镜。

6、AFM,英文全称:AtomicForceMicroscope,中文称:原子力显微镜。

二、工作原理不同

1.扫描电子显微镜的原理是用高能电子束对样品进行扫描,产生各种各样的物理信息。通过接收、放大和显示这些信息,可以观察到试样的表面形貌。

2.透射电子显微镜的整体工作原理如下:电子枪发出的电子束经过冷凝器在透镜的光轴在真空通道,通过冷凝器,它将收敛到一个薄,明亮而均匀的光斑,辐照样品室的样品。通过样品的电子束携带着样品内部的结构信息。通过样品致密部分的电子数量较少,而通过稀疏部分的电子数量较多。

物镜会聚焦点和一次放大后,电子束进入第二中间透镜和第一、第二投影透镜进行综合放大成像。最后,将放大后的电子图像投影到观察室的荧光屏上。屏幕将电子图像转换成可视图像供用户观察。

3、x射线衍射(XRD)的基本原理:当一束单色X射线入射晶体,因为水晶是由原子规则排列成一个细胞,规则的原子之间的距离和入射X射线波长具有相同的数量级,因此通过不同的原子散射X射线相互干涉,更影响一些特殊方向的X射线衍射,衍射线的位置和强度的空间分布,晶体结构密切相关。

4.入射的电子束和材料的作用可以激发原子内部的电子形成空穴。从填充孔到内壳层的转变所释放的能量可能以x射线的形式释放出来,产生特征性的x射线,也可能激发原子核外的另一个电子成为自由电子,即俄歇电子。

5.扫描隧道显微镜的工作原理非常简单。一个小电荷被放在探头上,电流从探头流出,穿过材料,到达下表面。当探针通过单个原子时,通过探针的电流发生变化,这些变化被记录下来。

电流在流经一个原子时涨落,从而非常详细地描绘出它的轮廓。经过多次流动后,人们可以通过绘制电流的波动得到构成网格的单个原子的美丽图画。

6.原子力显微镜的工作原理:当原子间的距离减小到一定程度时,原子间作用力迅速增大。因此,样品表面的高度可以直接由微探针的力转换而来,从而获得样品表面形貌的信息。

三、不同的功能

1.扫描电子显微镜(SEM)是介于透射电子显微镜和光学显微镜之间的一种微观形貌观察方法,可以直接利用样品表面材料的材料性质进行微观成像。

扫描电子显微镜具有高倍放大功能,可连续调节20000~200000倍。它有一个大的景深,一个大的视野,一个立体的形象,它可以直接观察到各种样品在不均匀表面上的细微结构。

样品制备很简单。目前,所有的扫描电镜设备都配备了x射线能谱仪,可以同时观察微观组织和形貌,分析微区成分。因此,它是当今非常有用的科学研究工具。

2.透射电子显微镜在材料科学和生物学中有着广泛的应用。由于电子容易散射或被物体吸收,穿透率低,样品的密度和厚度会影响最终成像质量。必须制备超薄的薄片,通常为50~100nm。

所以当你用透射电子显微镜观察样品时,你必须把它处理得很薄。常用的方法有:超薄切片法、冷冻超薄切片法、冷冻蚀刻法、冷冻断裂法等。对于液体样品,通常挂在预处理过的铜线上观察。

3X射线衍射检测的重要手段的人们意识到自然,探索自然,尤其是在凝聚态物理、材料科学、生活、医疗、化工、地质、矿物学、环境科学、考古学、历史、和许多其他领域发挥了积极作用,不断拓展新领域、新方法层出不穷。

特别是随着同步辐射源和自由电子激光的兴起,x射线衍射的研究方法还在不断扩展,如超高速x射线衍射、软x射线显微术、x射线吸收结构、共振非弹性x射线衍射、同步x射线层析显微术等。这些新的X射线衍射检测技术必将为各个学科注入新的活力。

4,俄歇电子在固体也经历了频繁的非弹性散射,可以逃避只是表面的固体表面原子层的俄歇电子,电子的能量通常是10~500电子伏特,他们的平均自由程很短,约5~20,所以俄歇电子能谱学调查是固体表面。

俄歇电子能谱通常采用电子束作为辐射源,可以进行聚焦和扫描。因此,俄歇电子能谱可用于表面微观分析,并可直接从屏幕上获得俄歇元素图像。它是现代固体表面研究的有力工具,广泛应用于各种材料的分析,催化、吸附、腐蚀、磨损等方面的研究。

5.当STM工作时,探头将足够接近样品,以产生具有高度和空间限制的电子束。因此,STM具有很高的空间分辨率,可以用于成像工作中的科学观测。

STM在加工的过程中进行了表面上可以实时成像进行了表面形态,用于查找各种结构性缺陷和表面损伤,表面沉积和蚀刻方法建立或切断电线,如消除缺陷,达到修复的目的,也可以用STM图像检查结果是好还是坏。

6.原子力显微镜的出现无疑促进了纳米技术的发展。扫描探针显微镜,以原子力显微镜为代表,是一系列的显微镜,使用一个小探针来扫描样品的表面,以提供高倍放大。Afm扫描可以提供各类样品的表面状态信息。

与传统显微镜相比,原子力显微镜观察样品的表面的优势高倍镜下在大气条件下,并且可以用于几乎所有样品(与某些表面光洁度要求)并可以获得样品表面的三维形貌图像没有任何其他的样品制备。

扫描后的三维形貌图像可进行粗糙度计算、厚度、步长、方框图或粒度分析。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/134239.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-03-17
下一篇2023-03-17

发表评论

登录后才能评论

评论列表(0条)

    保存