对可口可乐进行sem分析的方法

对可口可乐进行sem分析的方法,第1张

可口可乐网络营销策略分析 - 百度文库

6页发布时间: 2022年04月30日

1. 公司品牌策略 首先公司经营的产品要确定自己的品牌,然后去推广企业自己的 产品品牌,如果是知名的企业它的网下品牌可以得到很快宣传,通过 互联网快速建立自己的

2. 公司产品策略 企业使用网络营销方法要先明确自己的公司所卖产品或者服务项 目,明确哪些群体是消费者,有目的的寻找消费群体,产品的选择是 很重要的,

3. 产品价格策略 价格,是每个消费者最关注的,以最低价格购买到最好质量的产 品或服务是每个消费者的最大希望了。网络营销价格策略是成本和价

百度文库

可口可乐创意营销策略分析 - 百度文库

18页发布时间: 2016年05月15日

通过对可口可 乐公司创意营销发展的状况分析,找出可口可乐公司为何能将创意营销做的如 此出彩之处,帮助总结可口可乐...

百度文库

对可口可乐进行sem分析的方法 - 职场经理人答疑 - 问一问

5分钟内回复 多年专业经验

对可口可乐进行sem分析的方法

马上提问

SEM分析

116人正在咨询

可口可乐sem成功原因

131人正在咨询

洗发水的sem分析

109人正在咨询

SEM分析

116人正在咨询

优选职场答主在线答疑

在线

职场达人HU

活跃之星

新锐回答者

4.4

“态度非常好”

已帮助1.3万人

擅长:求职就业,五险一金,职业类型

提问

在线

何老师在职场

职场引路人

活跃之星

4.4

“回答迅速”

已帮助3.5万人

擅长:求职就业,职业类型,企业信息

提问

更多答主

问一问

可口可乐创意营销策略分析

可口可乐的创意营销》中对国内可口可乐创意进行了4PSWOT分析中提出一个观点“不做低头族开启创意之拧可持续发展是...

豆丁网

大家还在搜

SEM分析

可口可乐三大营销方式

对可口可乐广告的评价

可口可乐sem案例

可口可乐sem成功原因

洗发水的sem分析

可口可乐目标消费人群

百事和可口可乐哪个强

图像的符号学分析——以可口可乐广告为例 - 道客巴巴

2021年3月31日采取调查问卷的方式对结果进行分析。以皮尔斯的图像符号,指示符号,象征符号分类原则探讨可口可乐广告图像的...

道客阅读

可口可乐营销战略和策略分析 - 百度文库

10页发布时间: 2022年04月05日

1. 宏观环境分析 1、软饮料在中国的发展趋势。中国软饮料市场的发展是 从20世纪八十年代开始的。时至今日,已经成长为一个庞大、 成熟的市场。近年

2. 微观环境分析 总体来说可口可乐拥有比较稳定和坚固的供应商及规 模的中间商,供应链相对清晰,而且根据实际的情况不断调 整自己的供应链,价值链

百度文库

对可口可乐进行sem分析的方法 - 百度文库

可口可乐创意营销策略分析【范本模板】

的手段如何使可口可乐公司永远保持年轻活力我将可口可乐公司的创意营销分为几类进行分析结合数据比较一下...

阅读15次共18页

可口可乐创意营销策略分析【范本模板】

阅读21次共18页

可口可乐网络营销策略分析

阅读79次共4页

可口可乐营销战略和策略分析

阅读12次共10页

百度文库

大家还在搜

可口可乐的营销策略分析

可口可乐的广告策略分析

对可口可乐进行网络口碑营销

可口可乐sem案例

可口可乐的市场营销分析

无糖可口可乐的广告分析

可口可乐的春节广告分析

三只松鼠搜索引擎营销案例

可口可乐的广告分析 - 百度文库

发布时间: 2022年04月20日

百度文库

可口可乐公司营销策略分析 - 百度文库

3页发布时间: 2022年04月04日

可口可乐公司能在中国取得如此大的成功与其市场营销策略密切相关, 以下 本文就从三个方面分析可口可乐公司的营销组合...

百度文库

大家还在搜

可口可乐定价策略的建议

sem怎么数据分析

可口可乐的建议和策略

可口可乐市场分析总结

可口可乐社交媒体营销

可口可乐六大营销方式

可口可乐销量数据统计

可口可乐的春节广告分析

可口可乐公司营销策略分析 - 百度文库

3页发布时间: 2022年04月09日

可口可乐公司能在中国取得如此大的成功与其市场营销策略密切相关, 以下 本文就从三个方面分析可口可乐公司的营销组合...

百度文库

可口可乐stp分析 - 百度文库

4页发布时间: 2022年05月26日

从我们的调 查来看,社会阶层对于可口可乐的销 售的影响作用很小从生活方式来看,人们对于 可口可乐的 需求其实是

1997年9月,创业狂人Bill Gross创立了搜索引擎公司GoTo,后更名为Overture。9个月后,Overture开始 在搜索结果页面上呈现商业广告 ,广告主只在搜索引擎用户点击其广告的时候才需要向Overture付费,因此这种广告形式被称为 Pay-Per-Click 。隔年,Overture在NASDAQ成功上市;2003年,被雅虎收购。

雅虎最终放弃了自己的搜索业务, 但Overture所创立的商业模式,仍在被当今几乎所有主流搜索引擎使用。 从Google Adwords到百度竞价,它们实现搜索流量变现的基本商业逻辑皆可溯源至Overture。顺便八卦一句,Bill Gross不但自己是个创业狂,还在1996年建立了一间专门孵化创业公司的公司idealab,孵出了一连串金光闪闪的名字。

Pay-Per-Click的出现,称得上是互联网广告乃至整个广告行业的一个里程碑式的变化。广告主不再因为在某个广告位“ 展示 ”了自己的广告而支付费用,而是因为潜在消费者对其广告产生兴趣而进行的“ 点击 ”广告的行为付费。

换句话说, 广告主不再需要为对自己的产品或服务不感兴趣的人支付费用 ,John Wanamaker所提出的广告行业之“哥德巴赫猜想”——“我知道在广告上的投资有一半是无用的,但问题是我不知道是哪一半”——向着解决的方向迈出了关键性的一步。由于这种广告形式密切依存于搜索引擎,因此现在人们一般称它为搜索引擎营销(Search Engine Marketing,简称 SEM )。

在SEM广告出现之后,互联网广告的创新层出不穷,有些主打更加精美华丽的表现形式(如富媒体广告),有些则致力于更加精准地定位到潜在消费者(如各种RTB广告系统),但SEM广告仍然是一种非常重要的互联网广告形式,在国内市场上的收入占比接近40%。

SEM在将近20年的发展历程中,有过多次具体实现方式上的演变。这些变化所围绕的一个重要主题是, 当有多个广告主同时购买一个广告的时候,哪个广告主的广告应当排在前面 ?在早期,搜索引擎曾采用过单纯由广告主的出价决定其广告位置的方式。这一排序方法的弊端非常明显:它很容易导致好的广告位甚至是全部广告位都被广告费用支付能力和支付意愿都足够高的广告主所垄断的情况。

这样一来,搜索引擎的广告收入虽然有可能在短期内得到快速增长,但从长期来看,会将支付能力不高或者广告投放策略相对保守的广告主屏蔽在市场之外,从而缩小整个潜在市场的规模;同时,消费者也可能因为无法找到高质量的产品和服务而流失,使得市场规模进一步缩水。因此,各搜索引擎陆续推出了影响排名的权重因素。

权重因素的计算方式和命名随搜索引擎和时间推移而不同。以百度为例,它在2009年首次推出了自己的权重因素,并将其命名为“ 质量度 ”。质量度从低到高有一星至三星三个水平,是百度综合各种因素做出的对于广告质量的评价。2013年,三星分级的质量度被调整为0~10分的质量得分。

当有多个广告主购买同一个广告的时候,搜索引擎对每个广告主按照公式(1)计算出排名指数,然后按照排名指数从高到低排序,排名指数最高的广告主获得第一个广告位,以此类推。

在这一机制下, 权重得分高的广告主可以以更低的价格拿到更好的广告展现位置 ,从而搜索引擎实现了将广告主的竞争焦点从出价转移到提升权重得分上的目的。

权重的具体计算方式只有搜索引擎公司负责商业产品的核心团队了解,但是各公司都会公布可以提升权重的指导性原则,并且这些原则之间有很高的相似性,基本都以提升广告文案的吸引力、积累良好的投放数据等为主。

在决定了广告主的排列顺序之后,搜索引擎还需要决定的另一个重要问题是, 一旦用户点击了某一广告,搜索引擎应向相关的广告主收取多少费用 ?一个直观的选择是,按照广告主的出价收费。但各大搜索引擎多按类似于如下公式(2)的方式确定点击价格。为了便于说明,这里借用了百度对于权重的命名。公式中的“当前排名”与“下一名”均指根据公式(1)计算出来的广告排名。

根据公式(2),广告主实际支付的价格与自己的出价无关,反而在很大程度上受到排名指数紧随其后的竞争对手出价的制约;不过,结合公式(1)、(2)可以知道,它一定不会高于广告主自己的出价。这意味着,如果某广告主提供的广告质量度相对对手更高,那么他不但能够以较低的价格得到更好的排名,而且实际支付的点击价格还会比自己的出价(广告主愿意为这个广告支付的费用)更低;他在质量度上的相对优势越明显,就能节省越多的广告预算。搜索引擎通过这一机制,实现了 进一步激励广告主提供高质量广告的目的 。

以上就是搜索流量变现的基本商业逻辑,接下来我们简单了解一下,想要在搜索引擎上投放广告的广告主具体需要进行哪些工作。为了说明便利,这部分仍以百度为例,这些内容在各主要搜索引擎上会有诸多细微的差别,但主干部分非常相似。

实现搜索流量的变现需要广告主、搜索引擎和用户三方共同完成,缺一不可。广告主一方,首先要在想投放广告的搜索引擎上开立一个 推广账户 ,并预存一部分费用。

然后他就要做出两个最关键的决策,购买哪些广告以及确定自己愿意为每一个广告支付的费用。

由于用户是通过提交搜索词的方式来使用搜索引擎的,因此广告主购买的广告也是以词为单位的,称为“ 关键词 ”,一个关键词就是一条广告;为了得到更多的展现和点击机会, 关键词应当尽可能贴近用户的提交搜索词的习惯 。

选定了关键词之后,广告主还要为这些广告决定出价、落地页和匹配方式等设置。

出价在之前已有描述,“ 落地页 ”是指用户点击广告后会进入的页面;这个页面来自于广告主的网站,应该与关键词足够匹配,否则用户即使点击了广告也会因为无法取得想要的信息而离开。比如,关键词“英语口语培训价格”对应的落地页,不应只介绍培训班的上课时间。

“ 匹配模式 ”则是在告诉搜索引擎,当用户的搜索词和一个广告主购买的关键词相似度达到什么程度的时候,才考虑展现该广告主的广告;比如在搜索“英语口语培训”时,由于匹配模式的不同,用户有可能会看到“英语口语培训”、“口语培训”、“英语外教”、“全外教教学”等关键词对应的广告。

用户的搜索习惯千差万别,这就决定了一个有效的SEM账户中会包含非常多的关键词。

这些关键词有些彼此含义非常相似,比如品牌的全称和简称、各种型号的同一产品的名称等。为了提高广告的投放效率,搜索引擎要求广告主将关键词按照相似性进行分组;百度要求的分组结构是两层的,相似关键词组成“ 单元 ”、相似单元再合并为“ 计划 ”。

组内的关键词很相似,因此可以为每一组关键词撰写通用的广告语,称为“ 创意 ”;而且组的数量相对于关键词的数量要小得多,创意与组关联使得广告主有精力对其进行精雕细琢,写出高质量的广告语。这是搜索引擎引导广告主提升广告质量的又一个手段。

对于一组关键词,广告主还可以设置它们的 投放时间 (例如只在工作日下午3点到5点投放)和 投放地域 (例如只在一线城市和省会城市投放);在投放时间之外或投放地域之外进行搜索的用户,无法看到该广告主的广告。

至此,广告主的广告就有可能在搜索引擎上被用户看到和点击了。

图1  投放搜索引擎广告的实现

用户在搜索引擎进行搜索的时候,搜索引擎会先根据搜索词找到所有符合投放条件的关键词广告,按照公式(1)、(2)选择可以被用户看到的广告并计算出它们的点击价格,再将这些广告与非付费内容一起呈现给用户;用户看到广告后,可能会点击其中一部分引发其进一步阅览兴趣的广告,此时搜索引擎按照计算好的点击价格从用户预付的广告费用中扣除掉这次点击对应的费用。

SEM广告相关的基本行为到这里就结束了,搜索引擎会为广告主提供如下表1所示的数据报表以衡量投放效果。

表中的“ 展现 ”指一条关键词广告被呈现在搜索结果页上的次数;“ 点击 ”指用户点击该广告的次数;“ 消费 ”指广告主因这些点击向搜索引擎支付的合计费用;“ 平均排名 ”是关键词各次展现时排名的平均数,因为每个广告主预算以及他们在关键词推广时段等设定上的差异,同一关键词每次展现的排名可能是不同的,所以广告每次展现时的排名虽然是整数,但平均排名则可能是小数。

CPC和CTR是衍生指标:“ CPC ”是cost per click的缩写,通过消费除以点击得到,代表广告主平均为每次点击支付的费用;“ CTR ”是click through rate的缩写,通过点击除以展现得到,表示用户对展现出来的广告表现出兴趣的可能性大小。

搜索引擎一般以天为最细粒度提供数据,除了关键词级别之外,还按照账户级别、计划级别、单元级别、创意级别提供。广告主可以通过这些数据,了解自己的费用投放情况,并且根据它来优化自己的广告投放。比如,对于那些消费和CPC都很高(消耗资源多)、CTR很低(用户兴趣低)、平均排名非常靠前(出价相对于市场总体水平来说偏高)的关键词,可以考虑适当降低它们的出价(减少资源投放)或者尝试修改创意(尝试通过提升广告吸引力来提升质量度)。

表1  搜索引擎向广告主提供的数据报告示例片段

细心的读者可能会发现,在介绍SEM基本商业逻辑的时候,我们描述的是用户每一个步骤的行为,而表1所提供的则是按天对每一个关键词广告进行汇总或平均的结果。

在前面的讨论中,我们曾经提到过,关键词每一次展现的排名、用户是否点击广告、具体扣除的费用都可能随时间变化而不同,我们是否有可能拿到这样更细粒度的数据来对投放做更精细的优化呢?

比如,表1中的广告主,假定他希望平均排名2.5的广告“鲜花速递”一直都能出现在第2个广告位上就好,那么根据表1提供的数据,他还需要继续提高自己的出价,一般来说他为这个广告支付的费用也会随之增加。

但是,如果他进一步知道,这条广告在下午3点到5点之间可以保持在每次展现都在第1名,但在晚上8点至11点却一般排在第3名之后,那么他就可以在下午3~5点适度降低出价、在晚上8~11点适度提高出价,在控制消费量基本不变甚至略有下降的前提下实现提升平均排名的目标。

遗憾的是,搜索引擎一般并不提供这样的数据。

此外,同样是通过点击SEM广告进入广告主网站的搜索引擎用户,他们对于广告主的价值也不一样。

举一个极端的例子,彼此存在竞争关系的广告主也可以通过互相点击对方的广告来达到消耗对手广告预算的目的,这就是所谓的 恶意点击 。

搜索引擎会对其进行过滤,但不能完全防止它的发生。对于一些竞争特别激烈的行业,只要有少数的漏网之鱼就会造成大量的预算浪费(例如在前几年礼品经济还非常盛行的时候,节庆前期应季礼品相关的关键词,其点击价格有时会高达四位数)。

即使不考虑恶意点击之类极端的情况,通过SEM广告进入广告主网站的用户在到达网站后的行为也有差异,有些完成了广告主希望看到的行为(比如进入电商网站后,进行了注册和下单支付),有些则没有;广告主花费在前者身上的推广费用得到了回报而后者则没有。

由上可知,仅靠搜索引擎提供的表1数据只能对SEM投放进行粗线条的优化。一个补救的方式是,在自己的网站上部署 网站流量监测工具 。

网站流量监测工具会在用户访问广告主网站的时候记录他们的访问轨迹,以及注册、购买等关键行为。

大型搜索引擎为了进一步扩大自己的数据收集能力,一般也会提供免费的网站监测工具供广告主使用,比如google的GA和百度的百度统计。

这些通用型的免费工具比较适用于那些仅仅将互联网作为引入潜在消费者的一种工具、最终的成交和交付行为主要发生在线下、并且由于规模等原因所限暂时无力负担数据技术团队的广告主;比如在医疗美容、教育培训等行业,潜在消费者在网站上的行为终止于留下联系方式,后续的销售、到店、支付、交易、售后等行为都在线下进行。

但是对于电商、第三方支付、互联网金融等几乎所有成交和交付行为都发生在线上的广告主来说,还是应当从一开始就建立自己的技术团队和网站流量监测工具。

表2  网站流量监测工具记录的基本信息

如果广告主进行推广的搜索引擎是百度,还可以在关键词广告的落地页链接上部署百度提供的 URL通配符 参数,以获取更多的推广相关信息。

URL通配符是加在关键词落地页链接后的一串符合特定格式的字符串,能够在用户点击SEM广告进入广告主网站时,传递给广告主用户点击的是哪个关键词广告、当时排名的位置、该关键词的匹配模式等信息。

表2中“访问页面”里问号后面的字符串就是由URL通配符返回的结果,它告诉我们用户进入网站是通过点击了哪个关键词广告(keywordId=xxxxxxx)、这个广告当时展现在第几个广告位(adPosition=xxxx)。

对于不提供类似URL通配符一类服务的搜索引擎,广告主可以在每个落地页链接上自行添加参数标明关键词,但操作起来相对麻烦一些而且一般来说无法获取关键词之外的信息。

网站流量监测工具和URL统配符一起应用,广告主就可以知道广告每一次被点击的时间、大致发生在哪个地方、广告展现在第几个位置等信息;同时访问者编号可以让广告主识别点击了广告的用户是马上离开了网站,还是继续访问了其他页面,以及有没有进行广告主所希望的目标行为(根据广告主业务模式的不同,这个行为也会不同,常见的比如注册、下单、咨询等)。

换句话说,广告主可以知道一个用户通过点击了某个关键词广告进入了自己的网站,结合关键词的CPC,就大致知道了获取这个用户的成本;通过网站流量监测工具,可以知道这个用户后续有没有达成目标行为,这就是用户带来的产出。

投入和产出合并在一起,广告主就可以在用户、关键词广告等各种级别上进行推广的投入产出分析,并通过投入产出分析来对SEM广告投放进行更加精细的优化。

这就是图1中几个红色方框所表述的内容, 它们发生在搜索引擎之外,但却是广告主精准评价自己的SEM广告投放效果所不可或缺的部分 。

举例来说,有了补充数据之后,表1将被扩充为表3。从中可以看到,“鲜花礼品”虽然单价略高,但 ROI (Return>有些时候,广告主希望用户达成的目标行为结果无法以金额来表示,比如,当广告主希望取得更多注册用户时,其目标行为就是完成注册流程、成为注册用户。在这种情况下,表3中最右侧的两列可以被替换成“转化数量”和“CPA”。

“ 转化数量 ”就是用户达成的广告主目标行为的次数,在这个例子里就是新增了多少注册用户;“ CPA ”通过消费除以转化数量得到,表示广告主获得每一个目标行为的平均成本,它是比CPC更好的单位成本衡量指标。

表3   搜索引擎与广告主自行监测数据的合并

总结:

1

本节主要为大家介绍SEM广告的基本商业逻辑,其中的两个关键问题是:

a) 多个广告主购买同一个广告时,谁可以排在前面?

b) 用户点击广告时,搜索引擎会向广告主收取多少费用?

2

SEM在精准衡量广告效果方面,迈出了里程碑式的一步。广告主想要提升自己SEM广告的优化效果,除了使用搜索引擎提供的数据外,最好进一步通过如下方式获取补充数据:

a) 部署网站流量监控工具:有免费工具,也可自行开发;对有技术能力者,推荐后者

b) 在关键词广告落地页链接中添加URL通配符(百度)或自行添加关键词标识(其他搜索引擎)

3

讲解了一些基本术语的含义:

Pay-per-Click、SEM;账户、计划、单元、关键词、创意、落地页、出价、匹配模式、投放地域、投放时间;质量度、排名指数;展现、点击、消费、CPC、CTR、ROI、转化数量、CPA;网站流量监控工具、URL通配符。

练习:

附件中提供了一份模拟的关键词级别SEM推广报表,请根据表中已有的数据计算衍生指标CPC、CTR、ROI,并尝试寻找可能的优化方向。

PS:附件中的计划、单元组织结构参考了常见的关键词分组策略,可供初步接触SEM实务的读者参考。

参考:

1、本文在介绍sem广告时,为便于理解,对其业务逻辑进行了适度地简化。需要了解更详细内容的读者,请查阅各搜索引擎提供的指南

2、关于URL统配符的详细信息,可参考帮助文档。【http://dev2.baidu.com/docs.do?product=2#page=URL_Tag#page=URL_Tag】

3、关于网站流量监测工具及相关的数据分析,可参考网站分析在中国等网站及博客。【http://www.chinawebanalytics.cn/】

4、Bill Gross和John Wanamaker都是富有传奇色彩的人,有兴趣的读者可自行八卦。

注:

本文中使用的所有数据皆在真实数据基础上进行过模糊化处理,保留了实际投放中会遇到的典型数据特征,但不可作为实际投放的参考。

如下:

1. 大数据应用案例之:医疗行业

1)Seton Healthcare是采用IBM最新沃森技术医疗保健内容分析预测的首个客户。该技术允许企业找到大量病人相关的临床医疗信息,通过大数据处理,更好地分析病人的信息。

在加拿大多伦多的一家医院,针对早产婴儿,每秒钟有超过3000次的数据读取。通过这些数据分析,医院能够提前知道哪些早产儿出现问题并且有针对性地采取措施,避免早产婴儿夭折。

它让更多的创业者更方便地开发产品,比如通过社交网络来收集数据的健康类App。也许未来数年后,它们搜集的数据能让医生给你的诊断变得更为精确,比方说不是通用的成人每日三次一次一片,而是检测到你的血液中药剂已经代谢完成会自动提醒你再次服药。

2)大数据配合乔布斯癌症治疗

乔布斯是世界上第一个对自身所有DNA和肿瘤DNA进行排序的人。为此,他支付了高达几十万美元的费用。他得到的不是样本,而是包括整个基因的数据文档。医生按照所有基因按需下药,最终这种方式帮助乔布斯延长了好几年的生命。

2. 大数据应用案例之:能源行业

1)智能电网现在欧洲已经做到了终端,也就是所谓的智能电表。在德国,为了鼓励利用太阳能,会在家庭安装太阳能,除了卖电给你,当你的太阳能有多余电的时候还可以买回来。

通过电网收集每隔五分钟或十分钟收集一次数据,收集来的这些数据可以用来预测客户的用电习惯等,从而推断出在未来2~3个月时间里,整个电网大概需要多少电。有了这个预测后,就可以向发电或者供电企业购买一定数量的电。

因为电有点像期货一样,如果提前买就会比较便宜,买现货就比较贵。通过这个预测后,可以降低采购成本。

2)丹麦的维斯塔斯风能系统(Vestas Wind Systems)运用大数据,系统依靠的是BigInsights软件和IBM超级计算机,分析出应该在哪里设置涡轮发电机,事实上这是风能领域的重大挑战。在一个风电场20多年的运营过程中,准确的定位能帮助工厂实现能源产出的最大化。

为了锁定最理想的位置,Vestas分析了来自各方面的信息:风力和天气数据、湍流度、地形图、公司遍及全球的2.5万多个受控涡轮机组发回的传感器数据。这样一套信息处理体系赋予了公司独特的竞争优势,帮助其客户实现投资回报的最大化。

3. 大数据应用案例之:通信行业—通过大数据分析挽回核心客户

法国电信-Orange集团旗下的波兰电信公司Telekomunikacja Polska是波兰最大的语音和宽带固网供应商,希望有效的途径来准确预测并解决客户流失问题。

他们决定进行客户细分,方法是构建一张“社交图谱”- 分析客户数百万个电话的数据记录,特别关注 “谁给谁打了电话”以及“打电话的频率”两个方面。“社交图谱”把公司用户分成几大类,如:“联网型”、“桥梁型”、“领导型”以及“跟随型”。

这样的关系数据有助电信服务供应商深入洞悉一系列问题,如:哪些人会对可能“弃用”公司服务的客户产生较大的影响?挽留最有价值客户的难度有多大?运用这一方法,公司客户流失预测模型的准确率提升了47%。

4、大数据应用案例之:零售业—大数据帮零售企业制定促销策略

北美零售商百思买在北美的销售活动非常活跃,产品总数达到3万多种,产品的价格也随地区和市场条件而异。由于产品种类繁多,成本变化比较频繁,一年之中,变化可达四次之多。

结果,每年的调价次数高达12万次。最让高管头疼的是定价促销策略。公司组成了一个11人的团队,希望透过分析消费者的购买记录和相关信息,提高定价的准确度和响应速度。

定价团队的分析围绕着三个关键维度:

1)数量:团队需要分析海量信息。他们收集了上千万的消费者的购买记录,从客户不同维度分析,了解客户对每种产品种类的最高接受能力,从而为产品定出最佳价位。

2)多样性:团队除了分析了购买记录这种结构化的数据外,他们也利用社交媒体发帖这种新型的非结构化数据。由于消费者需要在零售商专页上点赞或留言以获得优惠券,团队利用情感分析公式来分析专页上消费者的情绪,从而判断他们对于公司的促销活动是否满意,并微调促销策略。

3)速度:为了实现价值最大化,团队对数据进行实时或近似实时的处理。他们成功地根据一个消费者既往的麦片购买记录,为身处超市麦片专柜的他/她即时发送优惠券,为客户带来便利性和惊喜。

透过这一系列的活动,团队提高了定价的准确度和响应速度,为零售商新增销售额和利润数千万美元。

5、大数据应用案例之:网络营销行业(SEM)

很多企业在做SEM的过程中,都有这样的感触:每年都会花费大量的预算在SEM推广中,但是因为关键词投入产出无法可视化,常常花了很多钱却不见具体的回报。

在竞争如此激烈的SEM市场中,企业需要一个高效的数据分析工具来尽可能地帮企业优化SEM推广,例如BDP,来帮企业节省不必要的支出,提升整体的经营绩效。

企业可借助数据平台提供的网络营销整合解决方案,打通各个搜索引擎营销(SEM)、在线客服系统和CRM系统,营销竞价人员无需掌握复杂的编程技术,简单拖拽即可生成报表,观察每一个关键词的投入和产出,分析每一个页面的转化,有效降低投放成本。

通过BDP实况分析数据,可以快速洞悉对手关键词的投放时段、地域及排名,并对其进行可视化的分析,实时监控自己和竞争对手的投放情况,了解对手的投放策略,支持自定义设置数据更新的时间点、监控频次和时段,及时调整策略。知已知彼,才能百战不殆。

6、大数据应用案例之:电商行业

意料之外:胸部最大的是新疆妹子。曾经淘宝平台显示,中国女性购买最多的文胸尺码为B罩杯。B罩杯占比达41.45%,其中又以75B的销量最好,其次是A罩杯,购买占比达25.26%,C罩杯只有8.96%。

虽然淘宝数据平台不能代表一切,但是结合现实来看,这个也具有普遍的代表性,只能感慨中国女性普遍size。在文胸颜色中,黑色最为畅销,黑色绝对是百搭,每个女性必备。

从省市排名,胸部最大的是新疆妹子。这些数据都对于文胸店铺而言是很好的参考,为店铺的库存、定价、款式选择等策略都有奠定数据基础。

7、大数据应用案例之:娱乐行业

微软大数据成功预测奥斯卡21项大奖。2013年,微软纽约研究院的经济学家大卫•罗斯柴尔德(David Rothschild)利用大数据成功预测24个奥斯卡奖项中的19个,成为人们津津乐道的话题。

今年罗斯柴尔德再接再厉,成功预测第86届奥斯卡金像奖颁奖典礼24个奖项中的21个,继续向人们展示现代科技的神奇魔力。

总的来说,大数据的终极目标并不仅仅是改变竞争环境,而是彻底扭转整个竞争环境,带来新机遇,企业需要应势而变。企业只有认识到这一点,使用合适的数据分析产品、聪明地使用和管理数据,才能在长期竞争中成为终极赢家。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/134283.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-03-17
下一篇2023-03-17

发表评论

登录后才能评论

评论列表(0条)

    保存