因此,对于水凝胶样品,通常需要进行冷冻干燥处理,将水分去除后再进行拍摄。
合成透明稳定的溶胶对于制备优异电性能的BaTiO3(BT)薄膜是尤为关键的一步。以无水乙醇、异丙醇、乙二醇和乙二醇甲醚4种溶剂做对比,从合成溶胶的稳定性、表面张力以及制备出的BaTiO3薄膜的SEM等几方面比较了4种溶剂的优缺点,最后以乙二醇甲醚合成的溶胶最清晰、稳定,用此溶胶在Si(100)基底上得到了均匀无开裂的钛酸钡薄膜。[关键词]BaTiO3薄膜;溶胶-凝胶法;溶剂;选择;表面张力
[中图分类号] O 648.16 [文献标识码] A[文章编号] 1003-5095(2010)02-0027-03
BaTiO3薄膜具有高的介电常数,良好的铁电、压电和绝缘性能,并随着器件的高集成、微型化的要求,BaTiO3薄膜在各领域受到高度重视。随着薄膜技术的进步,人们已经通过脉冲激光沉积、射频磁控溅射、水热法、金属有机物气相沉积(MOCVD)和溶胶-凝胶(Sol-Gol)等方法制备出了BaTiO3薄膜。溶胶-凝胶法由于反应在溶液中进行,均匀度高,而且烧结温度低、设备简单等而受到广泛的关注。而溶胶-凝胶法中一个重要的问题就是如何选择合适的原材料和合适的溶剂,这将最终影响薄膜的电学性质。
本文除了从溶胶的稳定性、薄膜的电子显微(SEM)照片等方面考察了4种溶剂的区别,其独到之处在于从溶胶的表面张力方面考察了不同溶剂合成的溶胶对基底的附着能力的强弱。综合考虑几方面的性能,选择出了能够生成稳定溶胶、溶胶与基片的结合性好、所制备的膜表面光滑、均匀的溶剂,为得到优异电性能的多层BaTiO3薄膜打下了基础。
1 实验
1.1 试剂及仪器
Ba(CH3COO)2(分析纯),天津市天大化工实验厂;Ti(OC4H9)4(Ⅲ级化学纯),北京化工厂;冰醋酸(分析纯),天津市大茂化学仪器供应站;乙二醇甲醚(分析醇),天津天泰精细化学品有限公司;乙二醇(分析纯),石家庄市有机化工厂;无水乙醇(分析纯),北京化工厂;异丙醇,山东省禹王实业总公司化学试剂厂。
日立S-570扫描电镜;表面张力测定仪(南京桑力实验设备有限公司)。
1.2 实验步骤
取一定量的Ba(CH3COO)2溶于热乙酸中,加入等物质量的比的Ti(OC4H9)4,搅拌过程中加入适量的水,使其水解,用溶剂把溶胶调成一定的浓度,搅拌1 h后形成黄色透明溶胶,过滤,取滤液在单晶Si(100)片上甩膜50 s,在一定温度下热分解,最后在973 K左右进行退火处理,就得到了以单晶硅为基质的钛酸钡薄膜。
2 结果与讨论
首先考察分别用4种溶剂合成的溶胶与基片Si之间的浸润情况,再根据甩膜后薄膜的表面形貌情况来选择最佳溶剂。实验所选用的溶剂为无水乙醇、异丙醇、乙二醇和乙二醇甲醚。
2.1 稳定性比较
溶胶制备过程中,醇盐中的-OR基会与醇溶剂中的-OR互相交换,这就可能造成醇盐水解活性的变化,同一醇盐选用的溶剂不同,其水解速率、凝胶时间也就随之改变[1]。相同条件下,选用的4种溶剂制备的溶胶时,其溶胶的稳定性:乙二醇为溶剂时,溶胶澄清透明、非常稳定,可保持1年以上;乙二醇甲醚为溶剂时溶胶能稳定存在10 d左右;用无水乙醇作溶剂的溶胶凝胶化时间需要大概7 d;异丙醇为溶剂时,溶胶不稳定,12 h之内便有不溶物析出,经实验测定为醋酸钡从溶胶中析出,而溶胶的稳定性的好坏直接影响制备多层膜工作的连续性。经实验对比,得出以4种物质为溶剂制备溶胶的稳定性依次为乙二醇>乙二醇甲醚>无水乙醇>异丙醇。
2.2 表面张力的比较
要使溶胶很好地附着在基片上,就必须考虑两者之间的相互作用,宏观上就是浸润问题,从热力学角度看属于表面能问题。基于这种理论,研究不同物质作溶剂时,用溶胶的表面张力的大小来说明溶胶与基片的附着问题。
2.2.1 实验步骤
采用最大泡压法测定所制得的溶胶的表面张力。
式中,σ是待测液的表面张力;r是毛细管的内半径;ΔP最大是气泡脱离时的最大压差。测量时,先用已知表面张力的液体水测求仪器常数值即毛细管的内半径。
测量待测液的表面张力:用在同样条件下制备的待测液,润洗支管试管和毛细管后,加入适量的样品于支管试管中,分别测得用无水乙醇、异丙醇、乙二醇甲醚、乙二醇作为溶剂的溶胶的最大压差,并计算出4种溶胶的表面张力。
2.2.2 实验数据
实验数据如表1、表2所示。由表1得出,所选用仪器的毛细管半径为0.169 8 mm。表2测得待测液气泡脱离时的最大压差,在得到毛细管半径的基础上,计算表面张力。
2.2.3 实验结果
分析薄膜在基片上是否能很好地附着,可以看二者是否能很好地互相浸润。因为金属是高表面能材料,而氧化物是低表面能材料。表面能的相对大小决定一种材料是否和另外一种材料相湿润并形成均匀的黏附层。具有非常低表面能的材料容易和具有较高表面能的材料相湿润[2-5]。即表面张力小的材料容易在表面张力大的材料表面形成吸附牢固的膜,反之则不能形成均匀的膜,而得到岛状沉积物。单晶硅是固体材料具有非常大的表面能,所以4种溶剂所制溶胶中,表面张力小的,应该与基片结合得最好,从实测数据得出以4种物质为溶剂所制备的溶胶其表面张力为乙二醇>乙二醇甲醚>无水乙醇>异丙醇,其结论和目测的实验结果正好相符。异丙醇和无水乙醇为溶剂时,膜与基片结合得好,溶胶能完全在单晶硅上铺展开,形成很均匀的单层膜。乙二醇甲醚为溶剂制得溶胶甩膜时,不如前两个好,但也较均匀,基本上能铺展开。乙二醇为溶剂因为其表面张力最大,溶胶和基片不浸润,甩膜一定时间后,溶胶仍然聚集在一起,形成岛状结构,不能铺展开。
2.3 SEM比较
溶剂的挥发性是影响薄膜质量的重要方面,Brinker认为Sol-Gol法制备膜的多孔性依赖于分子级产物的结构、缩聚和蒸发的相对速率几方面,缩聚使薄膜变硬,蒸发使其致密,提高蒸发速率有利于形成致密的薄膜 ,蒸发过快,膜不均匀,易留下孔洞和开裂[4,6,7]。图1是4种不同溶剂合成的溶胶制成的钛酸钡薄膜的电子显微镜照片。
a 无水乙醇为溶剂;b 乙二醇为溶剂;
c 异丙醇为溶剂;d 乙二醇甲醚为溶剂
图1 不同物质作溶剂时BaTiO3薄膜SEM图
从图1中a可看出以无水乙醇为溶剂时,膜的表面很不光滑,和无水乙醇挥发性极强有关,乙醇快速挥发导致薄膜形成快速而出现斑痕,难以得到均匀致密的薄膜。乙二醇和异丙醇作为溶剂时钛酸钡的表面出现了裂痕和孔洞,虽然薄膜上没有裂开的地方,薄膜很均匀,但是颗粒小,不利于形成具有铁电性的薄膜。乙二醇甲醚作溶剂的膜表面比较均匀、光滑,而且晶粒也较大。
3 结 论
通过以上3方面的比较,可以看出,4种溶剂各有利弊:无水乙醇和基片结合得好,溶胶较稳定,但由于其挥发性太强,导致用其制备的BaTiO3的微观形貌不好;异丙醇为溶剂时溶胶最不稳定,不利于实验的连续进行:乙二醇为溶剂其溶胶的稳定性很强,对连续性工作非常有易,但其最大的弊端是与基片的黏附性不好,这样将得不到实验所需要的膜;乙二醇甲醚为溶剂时,溶胶与基片的结合好,膜表面较光滑,颗粒大,虽然稳定性不是最强,但基本能满足实验的要求,综合以上实验结果,最终认为选择乙二醇甲醚为溶剂来制备钛酸钡薄膜前驱体溶胶比较合理,为进一步合成多层具有铁电性质的薄膜奠定了基础。
可以。四氢呋喃,又名氧杂环戊烷、1,4-环氧丁烷,是一个杂环有机化合物,化学式为C4H8O,属于醚类,是呋喃的完全氢化产物,为无色透明液体,溶于水、乙醇、乙醚、丙酮、苯等,主要用作溶剂、化学合成中间体、分析试剂。2017年10月27日,世界卫生组织国际癌症研究机构公布的致癌物清单初步整理参考,四氢呋喃在2B类致癌物清单中。[2]
中文名
四氢呋喃[3]
外文名
tetrahydrofuran,THF
别名
氧杂环戊烷、1,4-环氧丁烷[3]
化学式
C4H8O[3]
分子量
72.107
基本信息
化学式:C4H8O
分子量:72.107
CAS号:109-99-9
EINECS号:203-786-5
理化性质
密度:0.89g/cm3
熔点:-108.5℃
沸点:66℃
闪点:-14℃(CC)
折射率:1.465(20℃)
饱和蒸气压:19.3kPa(20℃)
临界温度:268℃
临界压力:5.19MPa
引燃温度:321℃
爆炸上限(V/V):11.8%
爆炸下限(V/V):1.8%
外观:无色液体
溶解性:溶于水、乙醇、乙醚、丙酮、苯等多数有机溶剂[1]
分子结构数据
摩尔折射率:20.05[3]
摩尔体积(cm3/mol):79.7
等张比容(90.2K):184.7
表面张力(dyne/cm):28.8
极化率(10-24 cm3):7.94[1]
计算化学数据
疏水参数计算参考值(XlogP):无
氢键供体数量:0
氢键受体数量:1
可旋转化学键数量:0
互变异构体数量:无
拓扑分子极性表面积:9.2[3]
重原子数量:5
表面电荷:0
复杂度:22.8
同位素原子数量:0
确定原子立构中心数量:0
不确定原子立构中心数量:0
确定化学键立构中心数量:0
不确定化学键立构中心数量:0
共价键单元数量:1[1]
毒理学数据
1、急性毒性
LD50:1650mg/kg(大鼠经口)
LC50:21000ppm(大鼠吸入,3h)
2、致突变性
微生物致突变:大肠杆菌1μmol/L
3、致畸性
小鼠孕后6~17d经口给予最低中毒剂量(TDLo)2592mg/kg,致肌肉骨骼系统发育畸形。[1]
生态学数据
1、生态毒性
LC50:2160mg/L(96h)(黑头呆鱼)
IC50:225mg/L(72h)(藻类)
2、生物降解
MITI-Ⅱ测试,初始浓度30ppm,污泥浓度100ppm,2周后降解100%。
3、非生物降解性
空气中,当羟基自由基浓度为5.00×105个/cm3时,降解半衰期为1d(理论)。[1]
用途
主要用作溶剂、化学合成中间体、分析试剂。
防护措施
呼吸系统防护:可能接触其蒸气时,应该佩戴过滤式防毒面具(半面罩)。必要时,建议佩戴自给式呼吸器。
眼睛防护:一般不需要特殊防护,高浓度接触时可戴安全防护眼镜。
身体防护:穿防静电工作服。
手防护:戴防苯耐油手套。
其他:工作现场严禁吸烟。工作毕,淋浴更衣。注意个人清洁卫生。
急救措施
皮肤接触:脱去被污染的衣着,用肥皂水和清水彻底冲洗皮肤。
眼睛接触:提起眼睑,用流动清水或生理盐水冲洗。就医。
吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。
食入:饮足量温水,催吐,就医。
操作处置与储存
操作注意事项:密闭操作,全面通风。操作人员必须经过专门培训,严格遵守操作规程。建议操作人员佩戴过滤式防毒面具(半面罩),戴安全防护眼镜,穿防静电工作服,戴橡胶耐油手套。远离火种、热源,工作场所严禁吸烟。使用防爆型的通风系统和设备。防止蒸气泄漏到工作场所空气中。避免与氧化剂、酸类、碱类接触。灌装时应控制流速,且有接地装置,防止静电积聚。搬运时要轻装轻卸,防止包装及容器损坏。配备相应品种和数量的消防器材及泄漏应急处理设备。倒空的容器可能残留有害物。
储存注意事项:通常商品加有阻聚剂。储存于阴凉、通风的库房。远离火种、热源。库温不宜超过30℃。包装要求密封,不可与空气接触。应与氧化剂、酸类、碱类等分开存放,切忌混储。采用防爆型照明、通风设施。禁止使用易产生火花的机械设备和工具。储区应备有泄漏应急处理设。
沸石(zeolite)是一种矿石,最早发现于1756年。瑞典的矿物学家克朗斯提(Axel Fredrik Cronstedt)发现有一类天然硅铝酸盐矿石在灼烧时会产生沸腾现象,因此命名为“沸石”(瑞典文zeolit)。在希腊文中意为“沸腾”(zeo)的“石头”(lithos)。此后,人们对沸石的研究不断深入。
中文名
沸石
外文名
zeolite
种类
30种
用途
环保壁材水处理土壤修复剂分子筛
中文别名
硅酸铝钾盐
历史
1932年,McBain提出了“分子筛”的概念。表示可以在分子水平上筛分物质的多孔材料。虽然沸石只是分子筛的一种,但是沸石在其中最具代表性,因此“沸石”和“分子筛”这两个词经常被混用。人造沸石是:磺酸化聚苯乙烯;天然沸石:铝硅酸钠。沸石族矿物常见于喷出岩,特别是玄武岩的孔隙中,也见于沉积岩、变质岩及热液矿床和某些近代温泉沉积中。河北省围场县为我国境内已发现的沸石储量最高的地区,沸石储量20亿吨以上。[1]
化学式
沸石的一般化学式为:AmBpO2p·nH2O,结构式为A(x/q) [ (AlO2)x (SiO2)y ] ·n(H2O) 其中:A为Ca、Na、K、Ba、Sr等阳离子,B为Al和Si,p为阳离子化合价,m为阳离子数,n为水分子数,x为Al原子数,y为Si原子数,(y/x)通常在1~5之间,(x+y)是单位晶胞中四面体的个数。
分子 量:218.247238[3]
EINECS号 215-283-8
性质与稳定性
如果遵照规格使用和储存则不会分解,未有已知危险反应,避免氧化物。溶于强碱。属高硅沸石。具有独特的孔结构、高的催化活性和热稳定性及耐酸性。
沸石是沸石族矿物的总称,是一种含水的碱或碱土金属铝硅酸盐矿物。全世界已发现天然沸石40多种,其中最常见的有斜发沸石、丝光沸石、菱沸石、毛沸石、钙十字沸石、片沸石、浊沸石、辉沸石和方沸石等。已被大量利用的是斜发沸石和丝光沸石。沸石族矿物所属晶系不一,晶体多呈纤维状、毛发状、柱状,少数呈板状或短柱状。
沸石具有离子交换性、吸附分离性、催化性、稳定性、化学反应性、可逆的脱水性、电导性等。沸石主要产于火山岩的裂隙或杏仁体中,与方解石、石髓、石英共生;亦产于火山碎屑沉积岩及温泉沉积中。[4]
品种
自然界已发现的沸石有80多种,较常见的有方沸石、菱沸石、钙沸石、片沸石、钠沸石、丝光沸石、辉沸石等,都以含钙、钠为主。它们含水量的多少随外界温度和湿度的变化而变化。晶体所属晶系随矿物种的不同而异,以单斜晶系和正交晶系(斜方晶系)的占多数。方沸石、菱沸石常呈等轴状晶形,片沸石、辉沸石呈板状,毛沸石、丝光沸石呈针状或纤维状,钙十字沸石和辉沸石双晶常见。纯净的各种沸石均为无色或白色,但可因混入杂质而呈各种浅色。玻璃光泽。解理随晶体结构而异。莫氏硬度中等。比重介于2.0~2.3,含钡的则可达 2.5~2.8。沸石主要形成于低温热液阶段,常见于喷出岩气孔中,也见于热液矿床和近代温泉沉积中。沸石可以借水的渗滤作用,以进行阳离子的交换,其成分中的钠离子可与水溶液中的钙、镁等离子交换,工业上用以软化硬水。沸石的晶体结构是由硅(铝)氧四面体连成三维的格架,格架中有各种大小不同的空穴和通道,具有很大的开放性。碱金属或碱土金属离子和水分子均分布在空穴和通道中,与格架的联系较弱。不同的离子交换对沸石结构影响很小,但使沸石的性质发生变化。晶格中存在的大小不同空腔,可以吸取或过滤大小不同的其他物质的分子。工业上常将其作为分子筛,以净化或分离混合成分的物质,如气体分离、石油净化、处理工业污染等。
工业用途沸石
一、斜发沸石
在岩石致密结构处的斜发沸石,多呈似放射状板片集合体微形态,而在孔隙发育处,可形成具完好或部分完好几何形态的板块晶体,宽可达20mm,厚5mm左右,端部约呈120度角,有的呈菱形板片和板条状。EDX谱为Si、Al、Na、K、Ca。
二、丝光沸石
SEM特征微形态为纤性状,纤丝般细直或稍有弯曲,直径约为0.2mm,长度可达几mm,可为自生矿物,但也见到在蚀变矿物外缘,呈放射状逐渐分开形成纤丝状丝光沸石。此种丝光沸石应为改造型矿物。EDX谱主为Si、Al、Ca、Na。
三、方沸石
SEM特征微形态为四角三八面体和各种形态的聚形,晶面多呈4、6边形,晶粒可大至几十mm,EDX谱特征元素为Si、Al、Na,可以有少量Ca。
四、菱沸石
SEM特征微形态短菱柱形大小可从1mm到几mm,EDX谱为Si、Al、Ca、可以有K、Na的少量存在。[5]
结构特点
沸石
有很多种,已经发现的就有36种。它们的共同特点就是具有架状结构,就是说在它们的晶体内,分子像搭架子似地连在一起,中间形成很多空腔。因为在这些空腔里还存在很多水分子,因此它们是含水矿物。这些水分在遇到高温时会排出来,比如用火焰去烧时,大多数沸石便会膨胀发泡,像是沸腾一般。沸石的名字就是因此而来。不同的沸石具有不同的形态,如方沸石和菱沸石一般为轴状晶体,片沸石和辉沸石则呈板状,丝光沸石又成了针状或纤维状等等。各种沸石如果内部纯净的话,它们应该是无色或白色,但是如果内部混入了其他杂质,便会显出各种浅浅的颜色来。沸石还具有玻璃样的光泽。我们知道沸石中的水分可以跑出来,但这并不会破坏沸石内部的晶体结构。因此,它还可以再重新吸收水或其他液体。于是,这也成了人们利用沸石的一个特点。我们可以用沸石来分离炼油时产生的一些物质,可以让它使空气变得干燥,可以让它吸附某些污染物,净化和干燥酒精等等。沸石矿物有很广的分布。特别多见于由火山碎屑形成的沉积岩石中,在土壤中也有发现。
沸石
晶体构造
沸石的晶体构造可分为三种组分:(1)铝硅酸盐骨架,(2)骨架内含可交换阳离子M的孔道和空洞,(3)潜在相的水分子,即沸石水。
沸石的构造与石英、长石的骨架有些不同。石英、长石的骨架构造比较严紧,比重2.6~2.7,而沸石的骨架构造比较空疏,比重2.0~2.2。其脱水后的空腔可大至47%,如菱沸石,甚至50%,如合成沸石。
在长石构造中,金属阳离子都限制在O离子构成的晶体骨架的空隙间,除非晶体被破坏,这些金属阳离子是很难自由活动的。Na或K被Ca交换,必须与Si、Al的置换同时进行,即成对置换,必然引起Si/AI比的改变。
在似长石构造中,金属阳离子位于比较开阔的相互通连的空隙间,比重2.14~2.45,阳离子可以通过构造的通路互相交换,而不破坏其晶体骨架。水方钠石和水霞石曾被认为是沸石族矿物。
在沸石构造中,金属阳离子位于晶体构造较大并相互通连的孔道或空洞间。因此,阳离子可自由地通过孔道发生交换作用,而不能影响其晶体骨架,像2(Na,K)(Ca2+)这样的交换,在沸石中是容易发生的,而在长石中是不能的。这种形式的交换作用,可能是离子交换的极端形式,只限于沸石及类似的矿物。
沸石的水分子与骨架离子和可交换金属阳离子的联系,一般都是松弛而微弱的。这些水分子比阳离子更自由地可以移动和出入孔道。在有热力的趋使下,可自由地脱、附而不影响其骨架构造。[6]
特性
沸石
是沸石族矿物的总称,是一种含水的碱金属或碱土金属的铝硅酸矿物。按沸石矿物特征分为架状、片状、纤维状及未分类四种,按孔道体系特征分为一维、二维、三维体系。任何沸石都由硅氧四面体和铝氧四面体组成。四面体只能以顶点相连,即共用一个氧原子,而不能“边”或“面”相连。铝氧四面体本身不能相连,其间至少有一个硅氧四面体。而硅氧四面体可以直接相连。硅氧四面体中的硅,可被铝原子置换而构成铝氧四面体。但铝原子是三价的,所以在铝氧四面体中,有一个氧原子的电价没有得到中和,而产生电荷不平衡,使整个铝氧四面体带负电。为了保持中性,必须有带正电的离子来抵消,一般是由碱金属和碱土金属离子来补偿,如Na、Ca及Sr、Ba、K、Mg等金属离子。由于沸石具有独特的内部结构和结晶化学性质,因而使沸石拥有多种可供工农业利用的特性。
沸石
世界上已发现的天然沸石一般为浅灰色,有时为肉红色。拿在手上明显感到比一般石头轻,这是因为沸石内部充满了细微的孔穴和通道,比蜂房要复杂得多。假如把沸石比作旅馆,那么1立方微米的这种“超级旅馆”内竟有100万个“房间”!的这些房间能根据“旅客”(分子和离子)的性别、高矮、胖瘦、嗜好的不同自动开门或挡驾,绝对不会让“胖子”到“瘦子”的房间去,也不会使高个子与矮个子同住一室。根据沸石的这一特性,人们用它来筛选分子,获得很好的效果。这对在工业废液中回收铜、铅、镉、镍、钼等金属微粒具有特别重要的意义。
沸石具有吸附性、离子交换性、催化和耐酸耐热等性能,因此被广泛用作吸附剂、离子交换剂和催化剂,也可用于气体的干燥、净化和污水处理等方面。沸石还具有“营养”价值。在饲料中添加5%的沸石粉,能使禽畜生长加快,体壮肉鲜,产蛋率高。
由于沸石的多孔性硅酸盐性质,小孔中存有一定量的空气,常被用于防暴沸。在加热时,小孔内的空气逸出,起到了气化核的作用,小气泡很容易在其边角上形成。
防暴沸原理
先说成因:对过热液体继续加热,会骤然而剧烈地发生沸腾现象,这种现象称为“暴沸”,或叫作“崩沸”。过热是亚稳状态。由于过热液体内部的涨落现象,某些地方具有足够高的能量的分子,可以彼此推开而形成极小的气泡。当过热的液体温度远高于沸点时,小气泡内的饱和蒸气压就比外界的压强高,于是气泡迅速增长而膨胀,以至由于破裂引起工业容器的爆炸。液体之所以发生过热的原因是液体里缺乏形成气泡的核心。为了清除在蒸馏过程中的过热现象和保证沸腾的平稳状态,常加沸石,或一端封口的毛细管,因为它们都能防止加热时的暴沸现象,把它们称做止暴剂又叫助沸剂,值得注意的是,不能在液体沸腾时,加入止暴剂,不能用已使用过的止暴剂。简单说就是因为加热时烧杯中的液体会向上冲,从而造成了一个个冒出来的“喷泉”,剧烈时甚至会溅出伤人,而沸石能够有效的阻止液体的向上冲,使加热时液体能够保持平稳。
用途
吸附剂和干燥剂
催化剂
洗涤剂
其他用途(污水处理、土壤改良剂、饲料添加剂)
天然沸石是一种新兴材料,被广泛应用于工业、农业、国防等部门,并且它的用途还在不断地开拓。沸石被用作离子交换剂、吸附分离剂、干燥剂、催化剂、水泥混合材料。[7]在石油、化学工业中,用作石油炼制的催化裂化、氢化裂化和石油的化学异构化、重整、烷基化、歧化;气、液净化、分离和储存剂;硬水软化、海水淡化剂;特殊干燥剂(干燥空气、氮、烃类等)。在轻工行业用于造纸、合成橡胶、塑料、树脂、涂料充填剂和素质颜色等。在国防、空间技术、超真空技术、开发能源、电子工业等方面,用作吸附分离剂和干燥剂。在建材工业中,用作水泥水硬性活性掺和料,烧制人工轻骨料,制作轻质高强度板材和砖。在农业上用作土壤改良剂,能起保肥、保水、防止病虫害的作用。在禽畜业中,作饲料(猪、鸡)的添加剂和除臭剂等,可促进牲口成长,提高小鸡成活率。在环境保护方面,用来处理废气、废水,从废水废液中脱除或回收金属离子,脱除废水中放射性污染物。
在医学上,沸石用于血液、尿中氮量的测定。沸石还被开发成为保健用品,用于抗衰老,去除体内积累的重金属。
在生产中,沸石常用于砂糖的精制。
新型墙材(加气混凝土砌块)原料
随着实心黏土砖逐步退出舞台,新型墙体材料应用比例当前已达到80%墙体材料生产企业以煤矸石、粉煤灰、陶粒、炉渣、轻质工业废渣、重质建筑垃圾、沸石等为主料,积极开发新型墙体材料。
在化学蒸馏或加热实验当中常用来防止暴沸,这是因为沸石的结构当中有大量的小孔,可作为气泡的凝结核,使反应液平稳沸腾。可用敲碎至米粒大小的素烧瓷片代替。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)