prism
做sem柱状图的方法步骤:
一、第1类
1.
根据Table
5的原始数据做柱状图。
2.
选择Column
graphs栏,因为该栏默认输入的都是原始数据,因此没有输入样本数的地方,只需选择数据处理类型为(Mean&SD)。
3.
在Data分栏中输入数据。
4.
软件就会自动算出均值和误差值,并做好柱状图。
二、第2类
1.
根据Table6的原始数据做两组数据比较的柱状图。
2.
涉及到两组数据比较,所以我们选择grouped栏,图表类型选择柱状图,因为Grouped栏并不是像Column
graphs栏一样默认输入的是原始数据,因此有输入样本数的地方,这边的样本数是4,因此我们相应地设置样本为4。
3.
在Data分栏中输入数据。
4.
软件会自动帮你做好一幅漂亮的分组柱状图。
三、用两组计算好的数据做一个两组比较的柱状图
1.
用Table
8的数据做成两组比较的柱状图。
2.
作步骤和2一样,只需多输入一组数据,仍然选择Grouped栏,告诉软件你输入的值是已经计算好的。
3.
在data栏中输入数据。
4.
软件即时生成图。
竞价员们都常见的几个问题:
1、竞争激烈,关键词越来越贵,不做又不行,到底该怎么办?大部分人选择优化关键词,同时也多了项大工程:关键词投放分析。
2、数据量大,工作效率低,数据结果不能及时呈现。除了关键词分析,还有单次点击价格、转化价格、ROI等数据都要分析,数据量超级大,有时候一个Excel表可能需要十几分钟才能打开,心好累~哪有那么多时间分析、处理数据啊。
3、数据分散,需要看多个平台的数据。先不说竞价有多个后台数据,还有页面行为(PV、UV等)、转化(销售签单、注册转化等)等数据,这么多难道要一一分析嘛,简直要跪了~
4、重复进行分析工作,费时又费力。每周都要重复做一次分析,然后把数据呈现给老板,宝宝心里苦!
5、开发数据分析系统投入太大。有人会说你们干嘛不自己开发一个数据系统,说的好简单啊,开发投入多大呀!
......
作为一名互联网公司的竞价人员,今天想跟大家分享一下我们公司是怎么高效、快速处理、分析竞价数据的!
1、接入所有数据(没数据怎么分析)
BDP个人版提供了丰富的数据源接口,可以整合我们公司所有的数据平台,包括推广后台、百度统计、美恰、伙伴云、数据库等,用最常用的百度推广的数据接入来举例(BDP提供了不同的接口,若推广量较小,建议连接百度搜索推广小户),具体的接入方式如图所示:
step1:点击数据源—网络营销—百度推广
step2:输入对应的账号信息即可
PS:权限代码可以登录百度商业开发者中心通过账号密码登录进去查看。
2、数据整合、处理
有了百度推广的后台数据后,就需要与注册/转化等数据结合了,接入各个平台数据后,可以打通从关键词展示—点击—咨询/注册—转化等一系列的链条。根据自己公司的实际情况选择接入的数据,通过合表功能完成表关联、表聚合和表追加等操作,组合成一张网络营销分析全链条数据表。
3、数据分析(需要分析哪些数据呢)
点击率:展现—点击
抵达率:点击—访问
转化率:访问—转化
千次展现成本:展现—消费
平均点击价格:点击—消费
转化成本:转化—消费
投入产出比(ROI):消费—成交金额
这是最常见、最基本、最重要的竞价数据指标了,当然每个公司要结合实际情况加一些自定义的数据指标,但是以上7个指标一定要重要关注。
(竞价数据关系,网上都能找到这张图片)
4、数据可视化图表呈现
一切准备工作就绪,在BDP个人版就可以通过拖拽分析将你所需要的数据维度全方位的展现在仪表盘中,在这里我用一些示例数据给大家呈现一些基本的维度。这样第一次做好分析图表后,每天只需要定时观察仪表盘上数据的变化就行了,不需要再重复分析,终于可以花更多的时间丰富创意文案、调整价格等工作上,让每一分钱都花的有价值,争取带来更多的转化效果,这也是我们竞价人的目标和使命啦!
总之,BDP解决大部分的数据问题,帮我至少减少50%的人工整理、分析数据的时间,当然其他竞价工作还是要靠自己嘛,通过数据分析、发现问题,比如转化低可能是因为落地页不好、客服没沟通好等因素,这些问题肯定是要自己去处理,数据是能及时告诉你问题,让你不断调整,不断提高效率和业绩!!!
怎样用图表分析数据
本文会给大家讲解:从入门到精通:如何用图表做好数据分析?
随着精益化运营的概念不断深入人心,数据分析已经成为了互联网人的必修课。相比于高深的概率统计、算法模型,简单、直观的图表工具得到了更为广泛的应用。
那么图表都有哪些类型?不同类型的图表又该怎么用?在这篇文章中我们结合互联网产品和运营的业务需求,由浅入深地给大家解答这些问题。
Part 1 | 初阶:维度和指标
初阶的图表简单易懂,能满足简单的数据分析需求,具体包括趋势、频数、比重、表格等类型。图表数据分析的前提就是将自己需要呈现的指标,以一定的维度拆分,在坐标系中以可视化的方式呈现出来。
1. 趋势图
趋势分析是最基础的图表分析,包括线图、柱状图、堆积图等多种形式。
线图可以观察一个或者多个数据指标连续变化的趋势,也可以根据需要与之前的周期进行同比分析。柱状图可以观察某一事件的变化趋势;如果将整体拆分可以做成堆积图,同时观察到部分所占比重及变化趋势。
图 1 - GrowingIO 周期对比线图:
图 2 - GrowingIO (堆积)柱状图:
产品经理和运营人员通过趋势图分析流量的实时走向,如每日 pv、uv、DAU 等基本数量指标以及停留时长、平均访问页面数等质量指标,可以及时把握产品的变化趋势。一旦趋势周期对比发生异常(异常高和异常低),我们需要及时介入排查原因、解决问题。
2. 频数图
根据业务需求对指标按照一定维度拆分,对比不同组别的频数,便于分清轻重缓急。
图 3 - GrowingIO 条形图:
条形图清晰展示了用户在不同类别上的频数,并且按照数量从大到小排序。上图展示的是某产品用户使用浏览器的频数分布,在资源有限的情况下产品可以先适配 Chrome 和 IE 浏览器以提升绝大部分用户体验。
图 4 - GrowingIO 双向条形图:
上面的双向条形图展示了某 B 端产品的客户平均停留时长极端情况(非常高和非常低),企业 1-5 非常活跃,可以让运营人员促进客户增购、续约,而企业 6-10 活跃度非常低,即将流失,需要运营人员立刻介入干预。
3. 比重图
比重分析主要是用来了解不同部分占总体的比例。横向比较,扇形图、环形图可以满足这类需求;纵向比较,百分比堆积图可以显示不同部分所占比例的趋势变化。
图 5 - GrowingIO 访问用户来源环形图:
图 6 - GrowingIO 百分比堆积图:
环形图(图 5)显示了某节点访问用户来源渠道比例,百分比堆积图(图 6)则动态显示了不同渠道比例的变化趋势,市场或者运营人员可以据此动态优化我们的资源投放。
4. 表格
表格信息密集,可以同时分析多维度、多指标数据,适合对数据敏感的人群使用。虽然表格能看到具体的数值,但是不能直观看到趋势、比重。
图 7 - GrowingIO 表格提供三十多个维度供指标拆解:
通过表格(图7)不难发现,移动端访问用户占了非常大的比例,但是跳出率非常高。这样的表格数据启示我们有必要优化移动端产品,提升整体访问深度。
5. 其他图表
下面介绍的是气泡图,气泡图用来展示一个事件与多个维度之间的关系,如分析B端产品客户成单周期与客户活跃度、登录账号数量之间的关系。
图 8 - GrowingIO 「客户温度 - 健康度」气泡图:
除了上述常见的图表,还有散点图、箱线图、股价图、雷达图等图表,在此不一一赘述。
Part 2 | 进阶:用户行为洞察
正如前面所言,初阶图表能满足简单的业务需求。但要想深入洞察用户行为,还需要紧密结合业务实践,用更加专业的图表辅助数据分析。在这里,我和大家分享三个实用的工具:漏斗图、留存图和热(力)图。
1. 漏斗图
漏斗图主要用于转化过程,例如注册流程、商品购买流程,分析用户在不同阶段的转化或者流失情况。
图 9 - GrowingIO 漏斗图:
产品运营应该关注重点转化路径的转化率,对于转化率非常低的环节、或者转化率突然下降的情况,都需要及时排查原因。
2. 留存图
留存是指用户首次访问你的网站,多少天后又重新回访的情况。利用留存曲线可以对留存进行深入分析。
图 10 - GrowingIO 留存曲线:
某问答社区通过留存曲线(图 10)发现,通过搜索引擎来源的新用户(红色)留存度和活跃度远远高于一般新用户(绿色),这启示社区运营者:搜索引擎可能成为社区的下一个增长点。
3. 热(力)图
热图,又称热力图,显示的是用户在你产品页面上的点击、停留偏好。借助热图产品经理可以优化产品页面布局,运营可以优化内容,确实是一个好工具。
图 11 - GrowingIO 热图:
Part 3 | 高阶:用数据驱动增长
随着数据可视化技术的不断发展,图表的类型越来越丰富,我们不可能在一篇文章中将其穷尽。但是图表数据分析的本质不会变,其最终目还是要辅助人们的决策。
1. 搭建属于自己的数据看板
人们的工作在不断细分,需要分析和决策的内容也不太一样。同样都是市场部门的同事,负责内容营销的与负责 SEM 的需要关注的数据差异很大,而这就需要搭建属于自己的数据看板。
图 12 - GrowingIO 数据看板:
例如 SEM 主管根据工作需要搭建数据看板,将广告投放(表格)、访客来源(百分比堆积图)、访问用户量(线图)、登录用户量(柱状图)和注册转化率(漏斗)等重要数据集中在一个看板中。数据看板能帮助我们以合适的方式展示数据,集中精力做好业务决策。
2. 在实践中践行 MVP
用图表做好数据分析并非易事,它绝非一朝一日之功,但也并不是无规律可循。
首先是对业务的理解,能洞察数字背后的商业意义。其次是灵活选择维度拆分指标,在图表坐标系中以合适的形式进行可视化展示。最后一定要从图表数据分析中发现问题,并指导业务决策。在这样不断反复的过程中,不断优化我们的图表数据分析过程,用数据来驱动业务增长。
本文作者:GrowingIO 增长团队,集工程、产品、市场、分析多重角色于一身,负责拉新和用户活跃,用数据驱动业务增长。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)