短纤维石棉的化学分散及纤维状SiO<sub>2<sub>的制备

短纤维石棉的化学分散及纤维状SiO<sub>2<sub>的制备,第1张

彭同江 孙红娟 陈吉明 马国华

(西南科技大学矿物材料及应用研究所,四川绵阳 621010)

摘要 对纤蛇纹石石棉的化学成分、晶体结构、形态特征和活性进行了研究,研究了纤蛇纹石石棉制备纤维状纳米SiO2的原理,并对试验产物进行了分析。结果表明:纤蛇纹石石棉是天然产出的纳米管状材料,其内管直径在3.5~24nm之间,多数小于11nm,外管直径在16~56nm之间,绝大多数在20~50nm范围内。纯净的纤蛇纹石石棉样品的化学成分主要为SiO2、MgO和H2O+,其质量分数SiO2为42%左右、MgO为42%左右、结构水H2O+为约13%。纤蛇纹石具有卷管状结构,化学键特点决定了其具有很好的化学活性和可改造性,为制备纤维状纳米SiO2粉体材料创造了基础。纤蛇纹石石棉纤维经酸处理后,MgO等组分被浸取出来转变为硫酸盐,而残留下非晶质纳米SiO2纤维残骸;经后处理即可获得纤维状SiO2纳米材料。

关键词 短纤维石棉;特征研究;制备纤维状SiO2。

第一作者简介:彭同江(1958—),男,博士,教授,研究方向:矿物晶体化学。E-mail:tjpeng@swust.edu.cn。

一、短纤维石棉的化学分散实验及结果分析

采用十二烷基苯磺酸钠(SDBS)对纤蛇纹石纤维进行了化学分散的试验和机理研究。结果表明,纤蛇纹石纤维进入水中表面带有正电荷,阴离子表面活性剂十二烷基苯磺酸钠对其具有很好的松解分散作用;分散后的纤维样品纤维直径大部分在50nm左右,Zeta电位恒为负值,且随pH值的增加,Zeta电位负值越来越大。

(一)短纤维石棉的化学分散实验

1.分散实验

取一定量水洗提纯后的纤蛇纹石纤维样品,加入一定量的十二烷基苯磺酸钠,再加水至容积500 mL,搅拌均匀后浸泡24 h,然后利用乳化机在一定转速下进行分散试验。

2.干燥方法

由于SDBS的作用,尽管纤维的浓度低(试验中取1%~2%),但纤蛇纹石纤维高度分散在水中,并形成胶体状的纤维浆。由于纤蛇纹石纤维的直径非常细,传统的过滤难于进行固液分离。当使用一层滤纸进行抽滤时,纤维浆的固液分离率较低,滤液中尚有少量的纤维;当使用两层或两层以上滤纸时,固液分离率有所提高,但抽滤速度太慢,平均每分钟抽出滤液约为1~3 mL。因此,试验中自行设计了两种使纤维浆体浓缩的方法,即直接干燥法和热水凝聚法。

(1)热水凝聚法

将蒸馏水适量装入烧杯中,加热至沸腾状态,然后边搅拌边缓慢倒入一定量的纤维浆体。由于水对纤维浆体的稀释作用,导致浆液中SDBS溶液的浓度下降,加上热的作用,使吸附在纤维表面上的SDBS分子产生解吸作用,导致第二层吸附分子层的破坏,从而使得原来分散的纤维发生凝聚而沉降下来。待浆液冷却下来后,使用抽气机进行抽滤,能加快实现固液分离。过滤获得的滤饼经洗涤后进行干燥,然后利用高速搅拌器进行分散处理,便可获得灰白色蓬松状的纤维样品。

(2)直接干燥法

将纤维浆体装入烧杯中,通过加热使纤维浆液中的水分完全蒸发,则在容器底部获得了纤维与SDBS的混合物。将其取出后,直接使用高速搅拌器在干法状态下进行分散处理,得到灰白色蓬松状的纤维样品。

与热水凝聚法不同的是,虽然同样是对纤维浆体进行加热,但直接干燥法不会对纤维浆体产生稀释的作用,不但不会使SDBS的浓度下降,反而提高。因此直接干燥法所获得的纤维间残留了较多的SDBS。而热水凝聚法可洗去大部分SDBS,所得到的固体产物中含有较少的SDBS。纤维样品中存在的SDBS可以通过煅烧除去。

(二)结果及讨论

1.影响纤维分散程度的因素

(1)分散剂用量

分散剂的使用量不同,纤维样品的分散程度不同,分析结果如图1所示。

由图1可以看出,随分散剂用量的增加,液体的透光率是逐步下降的,而过滤时间是逐渐上升的,即纤维的分散程度与分散剂的用量呈正相关关系。当分散剂的量由2.5%增加到15%时,体系的透光率下降很快;而再增加分散剂的量到17.5%时,透光率下降很少。当分散剂的量达到15%的时候,过滤时间出现了一个最大值;再增加分散剂的量时,过滤时间却有一定程度的下降。这说明适量的分散剂有利于纤维的分散,但分散剂过多,对纤维的分散不利。实验结果表明,SDBS的用量为15%时,纤维的分散效果最佳。

图1 分散剂用量对纤维分散程度的影响

(2)分散时间

分散时间不同,纤维样品的分散程度不同,分析结果如图2所示。

图2 分散时间对纤维分散程度的影响

图2表明,随着分散时间的增加,透光率逐渐减小,而过滤时间逐渐增加。这说明分散时间与纤维分散程度呈正相关关系。当分散时间小于60 min 时,分散程度随着时间的增加而较快地提高,线性关系也较好。当分散时间超过60 min以后,分散程度随时间的增加,变化程度较小。

(3)搅拌速度

分散时所采用乳化机的转速不同,纤维样品的分散程度不同,分析结果如图3所示。

图3 搅拌速度对纤维分散程度的影响

乳化机的高速剪切作用对纤蛇纹石纤维的分散具有很大的促进作用。图3表明,随乳化机转子转速增加,样品纤维的分散程度提高。这是因为乳化机转速越快,转子旋转所产生的离心力就越大,相应的被甩出的纤维的线速度就越大,纤维之间受到的剪切力、摩擦力和碰撞力就越大,进而使纤维更容易被开松分散。

SDBS对纤维的分散作用主要体现在其使用量对纤维分散程度的影响上;而分散时间和搅拌速度对纤维分散程度的影响,则通过SDBS(化学松解作用)和乳化机(物理松解作用)的协同作用而体现出来。

2.扫描电子显微镜分析(SEM)

SEM分析可以很清楚地表征纤维的分散状况。使用的是英国Leica Cambridge LTD公司生产的S440 型扫描电子显微镜。纤维原样和分散后所得到样品的SEM照片如图4、图5。

图4 纤维原样SC-Y的SEM照片

图5 分散样品的SEM照片

(a)热水凝聚法干燥的样品CA-FS-1;(b)直接干燥法干燥的样品CA-FS-2

由图4可以看出,未被分散处理的原始纤维样品在选矿加工过程中已有大量纤维被机械分散,但尚有大量纤维束存在,纤维束中纤维几乎相互平行地粘接在一起。

经过热水凝聚法(图5a)和直接干燥法(图5b)所得到的分散后的纤维,仅有少量的纤维束存在,绝大多数呈单根纤维存在,纤蛇纹石纤维得到了较充分地分散,所得到的单根纤维的直径绝大部分在50nm左右。热水凝聚法干燥的纤维样品,其纤维间和纤维表面几乎没有SDBS的胶结物存在。而直接干燥法干燥的纤维样品,其纤维间和纤维表面尚存有SDBS的胶结物。

3.Zeta电位分析

采用英国Malvern公司所产的Zetasizer 3000 Hs型Zeta电位分析仪对样品的Zeta 电位及pH 值进行了分析,结果如图6。

图6 样品Zeta 电位及随pH 值的变化

1—提纯纤维;2—热水凝聚法样品;3—直接干燥法样品

从图6 可以看出,分散前的提纯纤维的Zeta电位在很大的pH 值范围内为正。随pH值的增大,纤维表面的Zeta电位逐渐降低,并由正变负,其零电点的pH值为10.8左右。在测定范围内,纤维的最高Zeta电位值为46.3 mV,最低值为-16.7 mV。

使用SDBS分散后的纤维,其表面电性有了根本性的变化。带正电荷的原纤维表面吸附了阴离子表面活性剂后使其表面带有负电性,且Zeta电位值随pH值的增大而减小。在测定的范围内,对于热水凝聚法获得的样品Zeta电位在-2.7~-37.6 mV之间,对于直接干燥法获得的样品Zeta电位在-10.1~-44.8 mV之间。与热水凝聚法样品相比,直接干燥法样品中含有更多的SDBS,因此,其Zeta电位更低。可见,当SDBS的浓度增加时,纤蛇纹石纤维表面Zeta电位的负值也增加,进而可增加纤维之间的松解分散作用。

二、纤维状SiO2的制备原理与技术

研究了纤蛇纹石石棉制备纤维状纳米SiO2的原理,并对试验产物进行了分析。纤蛇纹石具有卷管状结构,化学键特点决定了其具有很好的化学活性和可改造性,为制备纤维状纳米SiO2粉体材料奠定了基础。纤蛇纹石石棉纤维经酸处理后,MgO等组分被浸取出来转变为硫酸盐,而残留下非晶质纳米SiO2纤维残骸;经后处理即可获得纤维状SiO2纳米材料。

(一)基本原理

纤蛇纹石石棉制备纤维状纳米SiO2粉体的原理主要依据如下4个方面:①卷管状纤蛇纹石石棉原纤维;②石棉原纤维中高含量的SiO2组分;③石棉原纤维中MgO等组分的酸可溶性及与SiO2组分的惰性;④非晶质SiO2纤维残骸的稳定性。

其中①、② 是制备纤维状纳米SiO2粉体的物质和结构基础;③、④是制备纤维状纳米SiO2粉体的工艺技术原理基础。其中③的工艺原理可由如下化学反应方程式表示:

中国非金属矿业

由反应式(1)获得的非晶质SiO2纤维残骸经加热与后处理可获得纤维状SiO2纳米粉体材料。

中国非金属矿业

(二)实验及结果分析

根据上述制备纤维状SiO2纳米粉体的基本原理,可将制备纤维状纳米SiO2的实验步骤分为5个环节:

1)石棉原纤维的物理分散与化学分散。采用机械搅拌和添加活性剂的方法,使石棉纤维分散成为胶体,目的是将石棉纤维束分散成趋向于单一纤维的石棉凝胶。

2)酸浸取反应与固液分离。采用硫酸处理石棉纤维,目的是将石棉中Mg、Fe等其他非SiO2组分通过与硫酸反应形成硫酸盐,达到与非晶质SiO2纤维分离,并洗涤除去硫酸盐组分。

3)非晶质SiO2纤维的均一化处理与分散。通过添加表面修饰剂的方法,使非晶质SiO2纤维的表面得到修饰,并趋向均一化。

4)表面包覆与干燥。采用偶联剂对非晶质SiO2纤维进行包覆处理,并干燥形成分散性良好的粉体。

5)加热处理。加热非晶质SiO2纤维使其脱去胶体水转化为纤维状SiO2纳米粉体。

对经物理与化学分散后的石棉原纤维进行扫描电镜分析,对非晶质SiO2纤维样品进行X射线衍射分析。

结果表明,①石棉纤维分散较均匀,纤维直径在20~30nm。尚有未完全分散的纤维束,直径小于100nm,纤维弯曲有韧性。②经酸和加热处理后所获得的产物为非晶质结构,与气相法等方法制备的纳米SiO2的结构相似。③纤维状SiO2成棒状、针状,纤维的细度一般在30~60nm,长度在800~1600nm,甚至更长。纤维状粉体呈松散状态时,纤维之间相互交织在一起。

三、结论

1)纤蛇纹石石棉是天然产出的纳米管状材料,其内管直径在3.5~24nm之间,多数小于11nm。外管直径在16~56nm之间,绝大多数在20~50nm之间。

2)纯净的纤蛇纹石石棉样品的化学成分主要为SiO2、MgO 和H2O+;其中,SiO2为42%左右,MgO也为42%左右,结构水H2O+为13%左右,Fe2O3、FeO和Al2O3等含量在2%~4%之间。

3)纤蛇纹石具有卷管状结构,化学键特点决定了其具有很好的化学和可改造性,加上化学成分和形态特点,这为制备纤维状SiO2纳米粉体材料奠定了基础。

4)纤蛇纹石石棉纤维经酸处理后,MgO、Fe2O3、Al2O3等组分被浸取出来转变为硫酸盐,而残留下非晶质纳米SiO2纤维残骸。非晶质纳米SiO2纤维残骸经后处理后可获得纤维状SiO2纳米粉体材料。

An Experiment on Chemical Dispersion of Short Asbestos Fiber and Preparation of Fibrous SiO2

Peng Tongjiang,Sun Hongjuan,Chen Jiming,Ma Guohua

(The Research Institute of Mineral Materials and Their Application,Southwest University of Sciences and Technology,Mianyang Sichuan 621010,China)

Abstract:The article described a research on chemical composition,crystal structure,morphological characteristics and activity of chrysotile asbestos.The principle of preparation of fibrous nano SiO2from chrysotile as bestos was studied,and an analysis of experimental products was undergone.The results shown,that the chrys otile asbestos was a naturally occurred nano tubular material with an inner diameter of between 3.5—24nm,mostly shorter 11nm and an exterior diameter of between 16—56nm,predominately in the range of 20—50nm.The main chemical compositional parts of pure chrysotile asbestos sample were SiO2,MgO and H2O with weight percentages as SiO242%,MgO 42% and structural water H2O 13%.The chrysotile asbestos has a curly tubular structure.The feature of its chemical bond determines that it has an excellent chemical activity and modi fiability,which lays a foundation for preparation of fibrous nano SiO2after acid treatment of chrsotile asbestos fi ber,its components like MgO and so on were extracted and transformed into sulfates,and noncrystalline nano fibrous SiO2remains which could be changed to fibrous SiO2nanomaterial through post-treatment.

Key words:short asbestos fiber,characteristies study,preparation of fibrous SiO2.

SEM,EDS,XRD的区别,SEM是扫描电镜,EDS是扫描电镜上配搭的一个用于微区分析成分的配件——能谱仪。能谱仪(EDS,Energy Dispersive Spectrometer)是用来对材料微区成分元素种类与含量分析,配合扫描电子显微镜与透射电子显微镜的使用。XRD是X射线衍射仪,是用于物相分析的检测设备。

扫描电子显微镜(scanning electron microscope,SEM,图2-17、18、19)于20世纪60年 代问世,用来观察标本的表面结构。其工作原理是用一束极细的电子束扫描样品,在样品表面激发出次级电子,次级电子的多少与电子束入射角有关,也就是说与样 品的表面结构有关,次级电子由探测体收集,并在那里被闪烁器转变为光信号,再经光电倍增管和放大器转变为电信号来控制荧光屏上电子束的强度,显示出与电子 束同步的扫描图像。图像为立体形象,反映了标本的表面结构。为了使标本表面发射出次级电子,标本在固定、脱水后,要喷涂上一层重金属微粒,重金属在电子束 的轰击下发出次级电子信号。 目前扫描电镜的分辨力为6~10nm,人眼能够区别荧光屏上两个相距0.2mm的光点,则扫描电镜的最大有效放大倍率为0.2mm/10nm=20000X。

EDS的原理是各种元素具有自己的X射线特征波长,特征波长的大小则取决于能级跃迁过程中释放出的特征能量△E,能谱仪就是利用不同元素X射线光子特征能量不同这一特点来进行成分分析的。使用范围:

1、高分子、陶瓷、混凝土、生物、矿物、纤维等无机或有机固体材料分析;

2、金属材料的相分析、成分分析和夹杂物形态成分的鉴定;

3、可对固体材料的表面涂层、镀层进行分析,如:金属化膜表面镀层的检测;

4、金银饰品、宝石首饰的鉴别,考古和文物鉴定,以及刑侦鉴定等领域;

5、进行材料表面微区成分的定性和定量分析,在材料表面做元素的面、线、点分布分析。

X射线衍射仪是利用衍射原理,精确测定物质的晶体结构,织构及应力,精确的进行物相分析,定性分析,定量分析。广泛应用于冶金、石油、化工、科研、航空航天、教学、材料生产等领域。

目前对木质纤维素原料的预处理方法有物理法、物理化学法、化学法及生物法,各方法各有优缺点,可同时选用多种方法,即组合法.

1.2.1 物理方法

机械粉碎通过剪切或研磨减小原料颗粒尺寸,提高反应面积,同时在一定程度上破坏植物纤维的高级结构,将结晶态纤维素转化成无定形态,使整个大分子结构松散,易于反应.纤维素分解性能与研磨时间和粉碎度直接相关,粒径越小,越容易反应,但需提供的能量也越多,因此存在最佳粉碎尺度.此法不足之处在于通过物理粉碎产生的无定形态非常不稳定,容易重新结晶化,使应用受限.

高能辐射、超声波、微波处理法是通过能量的作用产生物理化学效应,破坏分子间氢键和结晶态结构,降低聚合度,提高酶解速率.Youn 等用60Co的γ射线处理甘蔗渣使还原糖总量提高了约 3 倍.高能辐射可缩短工艺流程、无污染,但成本过高且辐射过程产生的游离基对后续反应有抑制作用.超声波通过能量作用打开氢键,破坏木质素和纤维素结晶区,使纤维的形态结构和超微结构发生变化,有效降低结晶度和规整度,利于酶解;微波处理主要是使物料内部分子发生碰撞,产生热量,导致物料升温,其处理机制为温度效应,研究表明微波可以改变植物纤维原料的超分子结构,使纤维结晶区尺寸发生变化,提高其反应活性.

1.2.2 物理化学方法

高压蒸汽爆破法不添加化学试剂,用高压蒸汽加热原料到一定温度(150~220℃),反应一段时间(10~30min)后迅速降压终止反应.突然减压时,产生二次蒸汽,使体积猛增,受机械力作用,细胞壁结构被破坏,木质素与纤维素分离,而半纤维素在这个过程中被水解并产生有机酸,酸可进一步催化水解得到可溶性糖.此法可去除大部分的半纤维素和少量的木质素,对纤维素几乎没有影响.经蒸汽爆破后的原料孔隙度增大,酶解率明显提高,但会产生有抑制作用的小分子副产物如醛类和有机酸,因此处理后原料需水洗及中和.该法处理费用低,酶解效果明显,已成功用于生产,加拿大Staketech 公司在这方面已取得很大成功.

氨纤维爆破法(AFEX),也称氨冷冻爆破,是利用液氨在相对较低的压力(1.5MPa)和温度(50~80℃)下对原料处理一段时间,然后突然释放压力爆破原料,此过程中液氨迅速汽化产生骤冷,使纤维素结构发生变化.与其他方法不同的是,AFEX 并没有直接分离出木质素和半纤维素,也不产生液态产物,该过程是通过氨与木质素作用改变木质纤维素微结构及超分子结构,使纤维素结构从Ⅰ态转化为Ⅲ态,提高反应活性,可降低酶用量至 1-5 IU/g,大大提高了酶解率.该法避免了高温处理引起的糖变性,不产生抑制性副产物,但成本比较高.类似的还有二氧化碳爆破法,不同的是处理过程中部分 CO2必须形成碳酸,作为后继水解反应的催化剂.

1.2.3 化学法

高温热水处理法是在高温(200℃以上)下,压力高于同温度下饱和蒸汽压时,使用液态水去除部分木质素及全部半纤维素,实质上是酸催化的自水解反应,但高温作用使产物有所损失,并产生一些有机酸抑制酶解及发酵.按水与底物的进料方式不同,分为流动水注入、水与物料相对进料及两者平行进料 3 种,它们都是利用高压液态沸水的高介电常数去溶解几乎所有的半纤维素和 1/3~2/3 的木质素,但反应的 pH 需要控制在 4 到 7 之间,以减少副反应.

稀酸处理植物纤维的研究已有大量报道,尤其在农作物原料中,酸分子的扩散速率很快,且较高温度下符合阿累尼乌斯方程.酸处理多采用稀硫酸(0.5%~1.0%),在 130~200℃与原料反应数分钟.处理后,半纤维素几乎全部水解为单糖(主要为木糖),但也有部分因过度降解转化为乙醛等小分子副产物;纤维素及木质素作为固体残留物不发生变化.半纤维素的转移,增加了纤维素表面积及反应活性,提高水解速率及糖化率.Todd 等通过优化实验条件,可提高还原糖产率至 93%.酸性物质的腐蚀性对反应器材要求高,且化学试剂的加入造成一定污染,该法工艺技术还有待进一步改善.

碱处理是通过碱对纤维素的润涨作用引起分子的消晶和晶格转化,可去除原料中的木质素,保留半纤维素和纤维素.相对酸处理而言,反映条件温和(55~130℃),但易产生不溶性副产物,同时碱用量大,处理时间长,甚至长达数周.最初选用的是 NaOH,它具有较强的脱木质素能力,但有约 50% 的半纤维素过度降解.常用的碱性物质还有熟石灰、氨等.用熟石灰与生物质反应时,氧气/空气的加入可以促进木质素的去除率,提高糖化率;与氨冷冻爆破(AFEX)不同,氨回收过滤法(ARP)是氨在较高温度(150~170℃)下与生物质反应,反应后液态氨被回收再利用.较高温度下,氨溶液可以有效润涨木质纤维素,破坏木质素与半纤维素间的化学键合,降低聚合度,且不会引起糖的降解,该法可有效去除 70%~80%的木质素、水解 40%~60%的半纤维素,保留 95%的纤维素.SEM,X-ray 等分析表明ARP 处理对原料结晶区无影响,但使非结晶区发生了变化,材料孔隙度和表面积明显增加,大大提高了酶解速率.总之碱法中碱耗量大,试剂需回收、中和、洗涤、工序多,应用于大规模生产还有待改进.

氧化处理即利用 O3 或 O2、H2O2 等氧化木质素分子,使其溶出,由此分离木质素和纤维素.常用的还有湿氧化法,即水与空气/氧气在 120℃以上与木质素中酚类物质反应并氧化苯丙烷单元侧链上的烯键,溶解木质素,可保留 70%的纤维素.对半纤维素而言,该法主要是将半纤维素从固相转移到液相,但并不催化液相中的半纤维素水解反应.反应过程产生一些副产物如糠醛及衍生物(如 HMF),对后续反应有一定抑制作用.

1.2.4 生物处理

可分解木质素的天然微生物大多是真菌类,主要有白腐菌、褐腐菌及软腐菌,其中软腐菌分解木质素能力较低,褐腐菌只能改变木质素结构但不能分解木质素,白腐菌分解木质素能力较强,能有效地选择性的分解植物纤维中的木质素.生物法处理条件温和、能耗低、无污染,但周期太长,而且微生物分解木质素的同时也能产生纤维素和半纤维素酶,影响得糖率,有待于通过基因工程或代谢工程选育选择性更强的分解木质素的微生物.

总之,处理方法各异,视具体情况,可协调利用多种方法(组合法)以获得更好效果.如蒸汽爆破法与碱性过氧化物协同作用,微波处理与碱同时作用,沸水处理与氨溶液处理联用等均取得良好效果.预处理方法的选择、工艺过程的设计及工艺参数的确定需要根据原料种类、预处理目的和要求而定,还需兼顾环境友好和低能耗原则.


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/149854.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-03-20
下一篇2023-03-20

发表评论

登录后才能评论

评论列表(0条)

    保存