你自己根据自己的的数据情况看吧,对于你提到的指标,我相信90%的文献都说是0.9以上为标准的,这个经验值还是很可信的,如果你不是正在写论文,那完全可以接受这个结果,如果你一定想要结果好,那就要么好好处理处理数据,重新做一下结构方程的分析,要么就找到相关的文献支持,以表明你用0.9以下的指标数值是合理的
如果是论文答辩或者发论文,只是0.8过一些那很可能要被答辩老师或者审稿人质疑的,接近0.9应该还勉强可以
其实应该说是最大似然法和最小二乘法的区别吧。采用OLS的回归分析方法存在几方面的限制:
(1)不允许有多个因变量或输出变量
(2)中间变量不能包含在与预测因子一样的单一模型中
(3)预测因子假设为没有测量误差
(4)预测因子间的多重共线性会妨碍结果解释
(5)结构方程模型不受这些方面的限制
SEM的优点:
(1)SEM程序同时提供总体模型检验和独立参数估计检验;
(2)回归系数,均值和方差同时被比较,即使多个组间交叉;
(3)验证性因子分析模型能净化误差,使得潜变量间的关联估计较少地被测量误差污染;
(4)拟合非标准模型的能力,包括灵活处理追踪数据,带自相关误差结构的数据库(时间序列分析),和带非正态分布变量和缺失数据的数据库。
构方程模型最为显著的两个特点是:
(1)评价多维的和相互关联的关系;
(2)能够发现这些关系中没有察觉到的概念关系,而且能够在评价的过程中解释测量误差。
1、最小二乘法的典型应用是求解一套x和y的成对数据对应的曲线(或者直线)方程。
其思想是:设y和x之间的关系可以用一个公式在表示,但其系数为待定系数。然后,将各个点的实测数据与计算求得的数据相减,得到“误差”或者不符值(有正有负,但其平方都是正的),将这些不符值的平方相加,得到总的“误差”。通过调整公式中的各个系数,使得误差平方和最小,那么就确定了y和x之间的方程的最好结果。求解最小二乘问题的过程中没有提及概率问题。
2、而极大似然估计值,是用于概率领域的一种方法,和最小二乘法是两个领域的。这种方法是应用求极大值的方法,让某一个公式求导值为0,再根据情况判断该极值是否是合乎要求。极大似然估计法可以用于正态分布中 μ, σ2的极大似然估计。极大似然估计法就是要选取类似的数值作为参数的估计值,使所选取的样本在被选的总体中出现的可能性为最大。
se应该是sem。
1、b代表回归系数
回归系数在回归方程中,表示自变量x对因变量y影响大小的参数。回归系数越大,表示x对y影响越大,正回归系数,表示y随x增大而增大,负回归系数表示y随x增大而减小。例如回归方程试Y=bX+a中,斜率b称为回归系数,表示X每变动一单位,平均而言,Y将变动b单位。
2、sem代表标准误
标准误,即样本均数的标准差,是描述均数抽样分布的离散程度及衡量均数抽样误差大小的尺度,反映的是样本均数之间的变异。标准误不是标准差,是多个样本平均数的标准差。
3、χ2代表卡方值
卡方值是非参数检验中的一个统计量,主要用于非参数统计分析中,它是卡方检验中的一个主要测试指标,卡方检验是一种用途很广的计数资料的假设检验方法,它属于非参数检验的范畴。
主要是比较两个及两个以上样本率( 构成比),以及两个分类变量的关联性分析,其根本思想就是在于比较理论频数和实际频数的吻合程度或拟合优度问题。
4、p代表p值
P值是用来判定假设检验结果的一个参数,也可以根据不同的分布使用分布的拒绝域进行比较。
5、OR代表比值比
OR值又称比值比、优势比,主要指病例组中暴露人数与非暴露人数的比值除以对照组中暴露人数与非暴露人数的比值,是流行病学研究中病例对照研究中的一个常用指标。
6、95%CI代表95%置信区间
置信区间是指由样本统计量所构造的总体参数的估计区间。在统计学中,一个概率样本的置信区间是对这个样本的某个总体参数的区间估计。
置信区间展现的是这个参数的真实值有一定概率落在测量结果的周围的程度,其给出的是被测量参数的测量值的可信程度,即前面所要求的“一个概率”。
扩展资料;
为理解P值的计算过程,用Z表示检验的统计量,ZC表示根据样本数据计算得到的检验统计量值。左侧检验
P值是当μ=μ0时,检验统计量小于或等于根据实际观测样本数据计算得到的检验统计量值的概率,即p值
右侧检验
P值是当μ=μ0时,检验统计量大于或等于根据实际观测样本数据计算得到的检验统计量值的概率,即p值
双侧检验
P值是当μ=μ0时,检验统计量大于或等于根据实际观测样本数据计算得到的检验统计量值的概率,即p值
参考资料来源;百度百科——回归系数
百度百科——sem
百度百科——卡方值
百度百科——p值
百度百科——OR值
百度百科——置信区间
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)