环境扫描的三种主要模式

环境扫描的三种主要模式,第1张

随着社会科学技术的不断发展进步,微区信息已经成为了现代物质信息研究的重要组成部分,环境扫描电子显微镜是近年发展起来的新型扫描电镜。它主要用于各种样品的表面形貌观察和成分分析,具有对试样必须干燥、洁净、导电的要求,广泛地应用于生命科学、医学、材料学等诸多学科。本文主要为大家介绍一下环境扫描电子显微镜的工作原理及应用范围。

环境扫描电子显微镜的工作原理

环境扫描电镜(environmental scanning electron microscopy,ESEM)采用多级真空系统、气体二次电子信号探测器等独特设计。观察不导电样品不需要镀导电膜.可以在控制温度、压力、相对湿度和低真空度的条件下进行观察分析含水的、含油的、已污染的、不导电的样品,减少了样品的干燥损伤和真空损伤。

环境扫描电镜有三种工作方式:A)高真空方式(常规方式);B)低真空方式:0.1~1 Torr;C)环境方式:0.1~20 Torr。

在高真空的常规扫描电镜中,用标准的Everhart Thornley探测器来接受被高能入射电子激发的样品的信号电流(二次电子和部分背散射电子),经放大后形成图像。

在低真空及环扫模式下,由电子枪发射的高能入射电子束穿过压差光阑进入样品室,射向被测定的样品,从样品表面激发出信号电子:二次电子一SE和背散射电子一BSE。由于样品室内有气体存在,入射电子和信号电子与气体分子碰撞,使之电离产生电子和离子。如果我们在样品和电极板之间加一个稳定电场,电离所产生的电子和离子会被分别引往与各自极性相反的电极方向,非导体表面积累的负电荷会与电离出来的正电荷中和而消除荷电。

图1环境扫描电镜中气体放大原理示意图

其中电子在途中被电场加速到足够高的能量时,会电离更多的气体分子,从而产生更多的电子,如此反复倍增。ESEM探测器正是利用此原理来增强信号的,这又称气体放大原理(如图1)。LFD(低真空度模式下使用的探测器)和GSED(环扫模式下使用的探测器)探头接收这些信号并将其直接传到电子放大器放大成电信号去调制显象管或其它成像系统。

ESEM通过不断地向样品室补充气体来维持样品室的低真空,同时也为气体二次电子探测器GSED提供工作气体,水蒸气是最常用的工作气体。但是样品室中气体分子的存在对于SEM的成像也有着副作用,由于气体分子对入射电子的散射使部分电子改变方向,不落在聚焦点上,从而产生图像的背底噪音同时入射电子使气体分子电离,产生电子和离子,也会加大图像的背底噪音.因而偏压电场的电压、方向及电极板的形状,气体状态(种类、压力等)和入射电子路径等因素都会对图像的分辨率产生影响,必须选择适当的参数才能使分辨率的降低保持在最小的限度。不同的探测器应有不同的工作参数。

环境扫描电子显微镜主要特点(以FEI Quanta为例)

1、FEI ESEM(环境扫描电镜)技术,可在高真空、低真空和环境真空条件下对各种样品进行观察和分析。

2、所有真空条件下的二次电子、背散射电子观察和微观分析。

3、先进的系统结构平台,全数字化系统。

4、可同时安装能谱仪、波谱仪和EBSP系统。

5、可安装低温冷台、加热台、拉伸台等进行样品的动态观察和分析。

环境扫描电子显微镜技术参数(以FEI Quanta 250/450/650为例)

1、分辨率:

二次电子:

高真空模式3.0nm 30kV,8nm 3kV

高真空减速模式7nm 3kV(可选项)

低真空模式3.0nm 30kV,10nm 3kV

环境真空模式3.0nm 30kV

背散射电子4.0nm 30kV

2、样品室压力最高达2600Pa

3、加速电压200V~30kV,连续调节

4、样品台移动范围

Quanta 250:X=Y=50mm

Quanta 450:X=Y=100mm

Quanta 650:X=Y=150mm

环境扫描电子显微镜代表性工作

        

图1杆菌(Bar=10μm)                         图2球菌(Bar=10μm)

        

  图3酵母菌(Bar=5μm)                          图4链霉菌(Bar=5μm)

        

图5真菌(桦南牛肝菌)(Bar=20μm)       图6污水处理中颗粒污泥表面微生物多样性(Bar=10μm)

        

图7水稻叶片表面腊质(野生型)(Bar=5μm)     图8水稻叶片表面腊质(突变体)(Bar=5μm)

SEM、TEM、XRD、AES、STM、AFM的区别主要是名称不同、工作原理不同、作用不同、

一、名称不同

1、SEM,英文全称:Scanningelectronmicroscope,中文称:扫描电子显微镜。

2、TEM,英文全称:TransmissionElectronMicroscope,中文称:透射电子显微镜。

3、XRD,英文全称:Diffractionofx-rays,中文称:X射线衍射。

4、AES,英文全称:AugerElectronSpectroscopy,中文称:俄歇电子能谱。

5、STM,英文全称:ScanningTunnelingMicroscope,中文称:扫描隧道显微镜。

6、AFM,英文全称:AtomicForceMicroscope,中文称:原子力显微镜。

二、工作原理不同

1.扫描电子显微镜的原理是用高能电子束对样品进行扫描,产生各种各样的物理信息。通过接收、放大和显示这些信息,可以观察到试样的表面形貌。

2.透射电子显微镜的整体工作原理如下:电子枪发出的电子束经过冷凝器在透镜的光轴在真空通道,通过冷凝器,它将收敛到一个薄,明亮而均匀的光斑,辐照样品室的样品。通过样品的电子束携带着样品内部的结构信息。通过样品致密部分的电子数量较少,而通过稀疏部分的电子数量较多。

物镜会聚焦点和一次放大后,电子束进入第二中间透镜和第一、第二投影透镜进行综合放大成像。最后,将放大后的电子图像投影到观察室的荧光屏上。屏幕将电子图像转换成可视图像供用户观察。

3、x射线衍射(XRD)的基本原理:当一束单色X射线入射晶体,因为水晶是由原子规则排列成一个细胞,规则的原子之间的距离和入射X射线波长具有相同的数量级,因此通过不同的原子散射X射线相互干涉,更影响一些特殊方向的X射线衍射,衍射线的位置和强度的空间分布,晶体结构密切相关。

4.入射的电子束和材料的作用可以激发原子内部的电子形成空穴。从填充孔到内壳层的转变所释放的能量可能以x射线的形式释放出来,产生特征性的x射线,也可能激发原子核外的另一个电子成为自由电子,即俄歇电子。

5.扫描隧道显微镜的工作原理非常简单。一个小电荷被放在探头上,电流从探头流出,穿过材料,到达下表面。当探针通过单个原子时,通过探针的电流发生变化,这些变化被记录下来。

电流在流经一个原子时涨落,从而非常详细地描绘出它的轮廓。经过多次流动后,人们可以通过绘制电流的波动得到构成网格的单个原子的美丽图画。

6.原子力显微镜的工作原理:当原子间的距离减小到一定程度时,原子间作用力迅速增大。因此,样品表面的高度可以直接由微探针的力转换而来,从而获得样品表面形貌的信息。

三、不同的功能

1.扫描电子显微镜(SEM)是介于透射电子显微镜和光学显微镜之间的一种微观形貌观察方法,可以直接利用样品表面材料的材料性质进行微观成像。

扫描电子显微镜具有高倍放大功能,可连续调节20000~200000倍。它有一个大的景深,一个大的视野,一个立体的形象,它可以直接观察到各种样品在不均匀表面上的细微结构。

样品制备很简单。目前,所有的扫描电镜设备都配备了x射线能谱仪,可以同时观察微观组织和形貌,分析微区成分。因此,它是当今非常有用的科学研究工具。

2.透射电子显微镜在材料科学和生物学中有着广泛的应用。由于电子容易散射或被物体吸收,穿透率低,样品的密度和厚度会影响最终成像质量。必须制备超薄的薄片,通常为50~100nm。

所以当你用透射电子显微镜观察样品时,你必须把它处理得很薄。常用的方法有:超薄切片法、冷冻超薄切片法、冷冻蚀刻法、冷冻断裂法等。对于液体样品,通常挂在预处理过的铜线上观察。

3X射线衍射检测的重要手段的人们意识到自然,探索自然,尤其是在凝聚态物理、材料科学、生活、医疗、化工、地质、矿物学、环境科学、考古学、历史、和许多其他领域发挥了积极作用,不断拓展新领域、新方法层出不穷。

特别是随着同步辐射源和自由电子激光的兴起,x射线衍射的研究方法还在不断扩展,如超高速x射线衍射、软x射线显微术、x射线吸收结构、共振非弹性x射线衍射、同步x射线层析显微术等。这些新的X射线衍射检测技术必将为各个学科注入新的活力。

4,俄歇电子在固体也经历了频繁的非弹性散射,可以逃避只是表面的固体表面原子层的俄歇电子,电子的能量通常是10~500电子伏特,他们的平均自由程很短,约5~20,所以俄歇电子能谱学调查是固体表面。

俄歇电子能谱通常采用电子束作为辐射源,可以进行聚焦和扫描。因此,俄歇电子能谱可用于表面微观分析,并可直接从屏幕上获得俄歇元素图像。它是现代固体表面研究的有力工具,广泛应用于各种材料的分析,催化、吸附、腐蚀、磨损等方面的研究。

5.当STM工作时,探头将足够接近样品,以产生具有高度和空间限制的电子束。因此,STM具有很高的空间分辨率,可以用于成像工作中的科学观测。

STM在加工的过程中进行了表面上可以实时成像进行了表面形态,用于查找各种结构性缺陷和表面损伤,表面沉积和蚀刻方法建立或切断电线,如消除缺陷,达到修复的目的,也可以用STM图像检查结果是好还是坏。

6.原子力显微镜的出现无疑促进了纳米技术的发展。扫描探针显微镜,以原子力显微镜为代表,是一系列的显微镜,使用一个小探针来扫描样品的表面,以提供高倍放大。Afm扫描可以提供各类样品的表面状态信息。

与传统显微镜相比,原子力显微镜观察样品的表面的优势高倍镜下在大气条件下,并且可以用于几乎所有样品(与某些表面光洁度要求)并可以获得样品表面的三维形貌图像没有任何其他的样品制备。

扫描后的三维形貌图像可进行粗糙度计算、厚度、步长、方框图或粒度分析。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/150254.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-03-21
下一篇2023-03-21

发表评论

登录后才能评论

评论列表(0条)

    保存