自己一手带的新人离职后,会有怎样的感受?

自己一手带的新人离职后,会有怎样的感受?,第1张

2016年12月29日,16年的最后三天,我离职了,人生的第一个工作历程就此结束。

在老大给我离职申请表让我填写时,内心是复杂的,有种解脱,有种担忧,有种不舍,有种害怕......之后当人事姐姐把“离职人员谈话表”交给我给填写时,伤感的情绪涌入心头,无法抑制,眼泪不住往下流。

我是一个很害怕告别的人,也许是年纪小,也许是感情丰富,也许是处世未深,我总不能很洒脱的说出“再见”

回想起,在这个公司十个月的时光,真的感谢这个平台每一个人。包容我,接纳我,培养我,给我机会让我去尝试。让我从一个什么也不会的大四学生到如今有想法会表达自己的社会人。

记得2015年10月25日,带着一份对未知的忐忑加入这个叫做“****”的大家庭。让我接触到很多在学校没有见过的东西。带我的老大是个很好的人生导师,他给我很多尝试,让我不断的去定位自己,甚至是对我们职业生涯进行修正指导。真的,我很幸福。大家都说第一份工作很重要,更重要的是带你的导师,他会影响到你今后的道路与职场规划。

从公司年会到周年庆活动,从网络编辑到行政助理再到sem直到最后的运营。这一步步走过来,我不清楚对于这个公司来说是我是否有价值,但我清楚的知道这个公司给我的人生带来的什么。

其实在我和老大提的初期,听完我的想法,他给予我很多长者的建议,例如:下份工作面试会遇到的各种问题等等,包括建议我先找到下家再离职等等,甚至表示他的挽留。这是让我体会到在一份工作中获得肯定与认可。

下午,执行经理和我也聊了很多,并且对我接下找自己理想工作需要注意的事项给予指导,甚至对于我以后的择偶标准给予他的个人建议。

很多人都说职场如战场,但我在这家公司感受到的同事们之间的关心,又竞争但是种良心竞争,没有说,谁为了谁不择手段这类。

很幸运,人生的第一份工作让我认清自己,找到自己的定位;很幸运,身边一直有人帮助关心我;很幸运,在这里遇到的每一个人......

虽然我不知道,今天的选择是否正确,但我希望自己更好,也希望它可以更好。

最后,我想说的是:我无悔自己的第一份工作在这里,感谢培养,铭记于心。

我说一下我网络营销的心得体会

初次接触网络销售方案的时候,总是带着很多的问号去学习这门课程。

没学之前,总认为网络销售应该是一种很简单的销售渠道,随着对网络销售的认知,我才发现其中的技巧并不亚于现实生活中的销售方案来得简单。

随着互联网用户越来越多,网上销售也已经从新兴销售模式变成了常态市场销售渠道。并有越来越多的公司也意识到可以把互联网作为自己的补充营销渠道,甚至有转变成主要的销售渠道。

在慢慢地深入了解中发现,如今已将成为互联网时代,而网络营销不过是一个很平凡的销售方案了,在网络营销中,要想脱颖而出,就必须寻找新奇、创新的方案。而现在的网络营销竞争决不输于线下的销售激烈。

所以,怎样才能让买家找到你的商店呢?这是一个至关重要的要素,试问,买家在网上购物,都找不到你的商城,又如何谈论销售呢?

而如何才能让客户找到你的网站呢?其中离不开关键词的选用和选择,懂得搜索引擎优化的人都知道,关键词选择是优化任何一个网站第一步必须要做的,选择关键词的重要原则之一就是尽量选择一些转化率较高,针对性较强的关键词,这就是所谓的长尾关键词。

网络营销的竞争力就是“创意”,无论是网络销售还是现实销售,营销都是争夺眼球和大脑的活动,而如何把握客户的眼球,这就是所说的“创意性”销售。

在网络营销中必要懂得推广自己的网站和产品,否则,即使你的产品质量再好,也只是徒劳,要想说服别人,必须得说服自己,首先推广者要对自己的产品或服务充满信任和热情。相信自己的产品是最好的,是最适合用户的,是能够给用户解决问题的,只有对自己的产品给予了肯定,才能写出说服别人的文案。

无论是线下销售还是网络销售,都有着它们的共同点,那就是“销售”,仔细观察,你会发现生活中有着很多值得借鉴的销售方案。但并不是照搬不误,而是有选择性的借鉴。

网络的真真假假,也是网络营销的一到坎,不过,既然是坎,当然也有跨越的方法。网络营销虽然多是文字的交流,但也一定要热情待人,诚实处世,真诚交流,才能获得客户的信任。

学习了这么久的网络销售方式,才真正体会到,原来网络营销并不是头脑所想的那样简易。曾深刻地领悟过一句关于网络营销中的一句话:“网络营销高手必须在了解和精通其他人的经验及套路后推翻这些套路,使用别人从来没用过的方式推广网站,才能耳目一新,达到最好的效果。

最近对离线数仓体系进行了扩容和架构改造,也算是一波三折,出了很多小插曲,有一些改进点对我们来说也是真空地带,通过对比和模拟压测总算是得到了预期的结果,这方面尤其值得一提的是郭运凯同学的敬业,很多前置的工作,优化和应用压测的工作都是他完成的。 

整体来说,整个事情的背景是因为服务器硬件过保,刚好借着过保服务器替换的机会来做集群架构的优化和改造。 

1.集群架构改造的目标

在之前也总结过目前存在的一些潜在问题,也是本次部署架构改进的目标:

1)之前 的GP segment数量设计过度 ,因为资源限制,过多考虑了功能和性能,对于集群的稳定性和资源平衡性考虑有所欠缺,在每个物理机节点上部署了10个Primary,10个Mirror,一旦1个服务器节点不可用,整个集群几乎无法支撑业务。

2)GP集群 的存储资源和性能的平衡不够 ,GP存储基于RAID-5,如果出现坏盘,磁盘重构的代价比较高,而且重构期间如果再出现坏盘,就会非常被动,而且对于离线数仓的数据质量要求较高,存储容量相对不是很大,所以在存储容量和性能的综合之上,我们选择了RAID-10。

3)集 群的异常场景的恢复需要完善, 集群在异常情况下(如服务器异常宕机,数据节点不可用,服务器后续过保实现节点滚动替换)的故障恢复场景测试不够充分,导致在一些迁移和改造中,相对底气不足,存在一些知识盲区。

4)集群版本过 ,功能和性能上存在改进空间。毕竟这个集群是4年前的版本,底层的PG节点的版本也比较旧了,在功能上和性能上都有一定的期望,至少能够与时俱进。

5)操作系统版本升 ,之前的操作系统是基于CentOS6,至少需要适配CentOS 7 。

6)集群TPCH 压测验收 ,集群在完成部署之后,需要做一次整体的TPCH压测验收,如果存在明显的问题需要不断调整配置和架构,使得达到预期的性能目标。

此外在应用层面也有一些考虑,总而言之,是希望能够解决绝大多数的痛点问题,无论是在系统层面,还是应用层面,都能上一个台阶。

2.集群规划设计的选型和思考

明确了目标,就是拆分任务来规划设计了,在规划设计方面主要有如下的几个问题:

1)Greenplum的版本选择 ,目前有两个主要的版本类别,一个是开源版(Open Source distribution)和Pivotal官方版,它们的其中一个差异就是官方版需要注册,签署协议,在此基础上还有GPCC等工具可以用,而开源版本可以实现源码编译或者rpm安装,无法配置GPCC。综合来看,我们选择了 开源版本的6.16.2 ,这其中也询问了一些行业朋友,特意选择了几个涉及稳定性bug修复的版本。

2)数据集市的技术选型 ,在数据集市的技术选型方面起初我是比较坚持基于PostgreSQL的模式,而业务侧是希望对于一些较为复杂的逻辑能够通过GP去支撑,一来二去之后,加上我咨询了一些行业朋友的意见,是可以选择基于GP的方案,于是我们就抱着试一试的方式做了压测,所以数据仓库和和数据集市会是两个不同规模体量的GP集群来支撑。

3)GP的容量规划 ,因为之前的节点设计有些过度,所以在数量上我们做了缩减,每台服务器部署12个segment节点,比如一共12台服务器,其中有10台服务器是Segment节点,每台上面部署了6个Primary,6个Mirror,另外2台部署了Master和Standby,就是即(6+6)*10+2,整体的配置情况类似下面的模式。

4)部署架构方案选型 ,部署架构想起来比较容易,但是落实起来有很多的考虑细节,起初考虑GP的Master和Standby节点如果混用还是能够节省一些资源,所以设计的数据仓库和数据集市的部署架构是这样考虑的,但是从走入部署阶段之后,很快就发现这种交叉部署的模式是不可行的,或者说有一些复杂度。

除此之外,在单个GP集群的部署架构层面,还有4类方案考虑。

  方案1 :Master,Standby和segment混合部署

  方案2 :Master,Standby和segment独立部署,整个集群的节点数会少一些

  方案3 :Segment独立部署,Master,Standby虚拟机部署

  方案4 :最小化单节点集群部署(这是数据集市最保底的方案)  

这方面存在较大的发挥空间,而且总体来说这种验证磨合的成本也相对比较高,实践给我上了一课, 越是想走捷径,越是会让你走一些弯路 ,而且有些时候的优化其实我也不知道改怎么往下走,感觉已经无路可走,所以上面这4种方案其实我们都做了相关的测试和验证。

3.集群架构的详细设计和实践

1)设计详细的部署架构图

在整体规划之上,我设计了如下的部署架构图,每个服务器节点有6个Primary,6个Mirror,服务器两两映射。

2)内核参数优化

按照官方文档的建议和具体的配置情况,我们对内核参数做了如下的配置:

vm.swappiness=10

vm.zone_reclaim_mode = 0

vm.dirty_expire_centisecs = 500

vm.dirty_writeback_centisecs = 100

vm.dirty_background_ratio = 0 # See System Memory

vm.dirty_ratio = 0

vm.dirty_background_bytes = 1610612736

vm.dirty_bytes = 4294967296

vm.min_free_kbytes = 3943084

vm.overcommit_memory=2

kernel.sem = 500 2048000 200 4096

4.集群部署步骤

1)首先是配置/etc/hosts,需要把所有节点的IP和主机名都整理出来。 

2)配置用户,很常规的步骤

groupadd  gpadmin

useradd gpadmin -g gpadmin

passwd gpadmin

3)配置sysctl.conf和资源配置

4)使用rpm模式安装

# yum install -y apr apr-util bzip2 krb5-devel  zip

# rpm -ivh open-source-greenplum-db-6.16.2-rhel7-x86_64.rpm

5)配置两个host文件,也是为了后面进行统一部署方便,在此建议先开启gpadmin的sudo权限,可以通过gpssh处理一些较为复杂的批量操作

6)通过gpssh-exkeys来打通ssh信任关系,这里需要吐槽这个ssh互信,端口还得是22,否则处理起来很麻烦,需要修改/etc/ssh/sshd_config文件

gpssh-exkeys -f hostlist

7)较为复杂的一步是打包master的Greenplum-db-6.16.2软件,然后分发到各个segment机器中,整个过程涉及文件打包,批量传输和配置,可以借助gpscp和gpssh,比如gpscp传输文件,如下的命令会传输到/tmp目录下

gpscp -f /usr/local/greenplum-db/conf/hostlist /tmp/greenplum-db-6.16.2.tar.gz =:/tmp

或者说在每台服务器上面直接rpm -ivh安装也可以。

8)Master节点需要单独配置相关的目录,而Segment节点的目录可以提前规划好,比如我们把Primary和Mirror放在不同的分区。 

mkdir -p /data1/gpdata/gpdatap1

mkdir -p /data1/gpdata/gpdatap2

mkdir -p /data2/gpdata/gpdatam1

mkdir -p /data2/gpdata/gpdatam2

9)整个过程里最关键的就是gpinitsystem_config配置了,因为Segment节点的ID配置和命名,端口区间都是根据一定的规则来动态生成的,所以对于目录的配置需要额外注意。

10)部署GP集群最关键的命令是

gpinitsystem -c gpinitsystem_config -s 【standby_hostname】

其中文件gpinitsystem_config的主要内容如下:

MASTER_HOSTNAME=xxxx

declare -a DATA_DIRECTORY=(/data1/gpdata/gpdatap1  /data1/gpdata/gpdatap2 /data1/gpdata/gpdatap3 /data1/gpdata/gpdatap4 /data1/gpdata/gpdatap5 /data1/gpdata/gpdatap6)

TRUSTED_SHELL=ssh

declare -a MIRROR_DATA_DIRECTORY=(/data2/gpdata/gpdatam1  /data2/gpdata/gpdatam2 /data2/gpdata/gpdatam3 /data2/gpdata/gpdatam4 /data2/gpdata/gpdatam5 /data2/gpdata/gpdatam6)

MACHINE_LIST_FILE=/usr/local/greenplum-db/conf/seg_hosts

整个过程大约5分钟~10分钟以内会完成,在部署过程中建议要查看后端的日志查看是否有异常,异常情况下的体验不是很好,可能会白等。

5.集群部署问题梳理

集群部署中还是有很多细节的问题,太基础的就不提了,基本上就是配置,目录权限等问题,我提另外几个:

1) 资源配置问题 ,如果/etc/security/limits.conf的资源配置不足会在安装时有如下的警告:

2) 网络问题 ,集群部署完成后可以正常操作,但是在查询数据的时候会抛出错误,比如SQL是这样的,看起来很简单:select count(*) from customer,但是会抛出如下的错误:

这个问题的主要原因还是和防火墙配置相关,其实不光需要配置INPUT的权限,还需要配置OUTPUT的权限。 

对于数据节点可以开放略大的权限,如:

入口的配置:

-A INPUT -p all -s xxxxx    -j ACCEPT

出口的配置:

-A OUTPUT -p all -s xxxxx    -j ACCEPT

3)网络配置问题 ,这个问题比较诡异的是,报错和上面是一样的,但是在排除了防火墙配置后,select count(*) from customer;这样的语句是可以执行的,但是执行的等待时间较长,比如表lineitem这表比较大,过亿的数据量,,在10个物理节点时,查询响应时间是10秒,但是4个物理节点,查询响应时间是在90秒,总体删感觉说不过去。

为了排查网络问题,使用gpcheckperf等工具也做过测试,4节点和10节点的基础配置也是相同的。

gpcheckperf -f /usr/local/greenplum-db/conf/seg_hosts -r N -d /tmp

$ cat /etc/hosts

127.0.0.1   localhost localhost.localdomain localhost4 localhost4.localdomain4

::1      localhost localhost.localdomain localhost6 localhost6.localdomain6

#127.0.0.1    test-dbs-gp-128-230

xxxxx.128.238 test-dbs-gp-svr-128-238

xxxxx.128.239 test-dbs-gp-svr-128-239

其中127.0.0.1的这个配置在segment和Master,Standby混部的情况是存在问题的,修正后就没问题了,这个关键的问题也是郭运凯同学发现的。

5.集群故障恢复的测试

集群的故障测试是本次架构设计中的重点内容,所以这一块也是跃跃欲试。

整体上我们包含两个场景,服务器宕机修复后的集群恢复和服务器不可用时的恢复方式。

第一种场景相对比较简单,就是让Segment节点重新加入集群,并且在集群层面将Primary和Mirror的角色互换,而第二种场景相对时间较长一些,主要原因是需要重构数据节点,这个代价基本就就是PG层面的数据恢复了,为了整个测试和恢复能够完整模拟,我们采用了类似的恢复方式,比如宕机修复使用了服务器重启来替代,而服务器不可用则使用了清理数据目录,类似于一台新配置机器的模式。

1)服务器宕机修复后集群恢复

select * from gp_segment_configuration where status!='u'

gprecoverseg  -o ./recov

gprecoverseg -r

select * from gp_segment_configuration where status='u'

2)服务器不可用时集群恢复

重构数据节点的过程中,总体来看网络带宽还是使用很充分的。

select * from gp_segment_configuration where status='u'

select * from gp_segment_configuration where status='u' and role!=preferred_role

gprecoverseg -r

select * from gp_segment_configuration where status='u' and role!=preferred_role

经过测试,重启节点到数据修复,近50G数据耗时3分钟左右

6.集群优化问题梳理

1)部署架构优化和迭代

对于优化问题,是本次测试中尤其关注,而且争议较多的部分。 

首先在做完初步选型后,数仓体系的部署相对是比较顺利的,采用的是第一套方案。

数据集市的集群部分因为节点相对较少,所以就选用了第二套方案

实际测试的过程,因为配置问题导致TPCH的结果没有达到预期。

所以这个阶段也产生了一些疑问和怀疑,一种就是折回第一种方案,但是节点数会少很多,要不就是第三种采用虚拟机的模式部署,最保底的方案则是单节点部署,当然这是最牵强的方案。

这个阶段确实很难,而在上面提到的修复了配置之后,集群好像突然开悟了一般,性能表现不错,很快就完成了100G和1T数据量的TPCH测试。

在后续的改造中,我们也尝试了第三套方案,基于虚拟机的模式,通过测试发现,远没有我们预期的那么理想,在同样的数据节点下,Master和Standby采用物理机和虚拟机,性能差异非常大,这个是出乎我们预料的。比如同样的SQL,方案3执行需要2秒,而方案2则需要80秒,这个差异我们对比了很多指标,最后我个人理解差异还是在网卡部分。

所以经过对比后,还是选择了方案2的混合部署模式。

2)SQL性能优化的分析

此外整个过程的TPCH也为集群的性能表现提供了参考。比如方案2的混合部署模式下,有一条SQL需要18秒,但是相比同类型的集群,可能就只需要2秒钟左右,这块显然是存在问题的。 

在排除了系统配置,硬件配置的差异之后,经典的解决办法还是查看执行计划。

性能较差的SQL执行计划:

# explain analyze select count(*)from customer

QUERY PLAN   

Aggregate  (cost=0.00..431.00 rows=1 width=8) (actual time=24792.916..24792.916 rows=1 loops=1)

   ->  Gather Motion 36:1  (slice1segments: 36)  (cost=0.00..431.00 rows=1 width=1) (actual time=3.255..16489.394 rows=150000000 loops=1)

         ->  Seq Scan on customer  (cost=0.00..431.00 rows=1 width=1) (actual time=0.780..1267.878 rows=4172607 loops=1)

Planning time: 4.466 ms

   (slice0)    Executor memory: 680K bytes.

   (slice1)    Executor memory: 218K bytes avg x 36 workers, 218K bytes max (seg0).

Memory used:  2457600kB

Optimizer: Pivotal Optimizer (GPORCA)

Execution time: 24832.611 ms

(9 rows)

Time: 24892.500 ms

性能较好的SQL执行计划:

# explain analyze select count(*)from customer                            

QUERY PLAN

Aggregate  (cost=0.00..842.08 rows=1 width=8) (actual time=1519.311..1519.311 rows=1 loops=1)

   ->  Gather Motion 36:1  (slice1segments: 36)  (cost=0.00..842.08 rows=1 width=8) (actual time=634.787..1519.214 rows=36 loops=1)

         ->  Aggregate  (cost=0.00..842.08 rows=1 width=8) (actual time=1473.296..1473.296 rows=1 loops=1)

               ->  Seq Scan on customer  (cost=0.00..834.33 rows=4166667 width=1) (actual time=0.758..438.319 rows=4172607 loops=1)

Planning time: 5.033 ms

   (slice0)    Executor memory: 176K bytes.

   (slice1)    Executor memory: 234K bytes avg x 36 workers, 234K bytes max (seg0).

Memory used:  2457600kB

Optimizer: Pivotal Optimizer (GPORCA)

Execution time: 1543.611 ms

(10 rows)

Time: 1549.324 ms

很明显执行计划是被误导了,而误导的因素则是基于统计信息,这个问题的修复很简单:

analyze customer

但是深究原因,则是在压测时,先是使用了100G压测,压测完之后保留了原来的表结构,直接导入了1T的数据量,导致执行计划这块没有更新。

3)集群配置优化

此外也做了一些集群配置层面的优化,比如对缓存做了调整。 

gpconfig -c statement_mem -m 2457600 -v 2457600

gpconfig -c gp_vmem_protect_limit -m 32000 -v 32000

7.集群优化数据

最后来感受下集群的性能:

1)10个物理节点,(6+6)*10+2

tpch_1t=# iming on

Timing is on.

tpch_1t=# select count(*)from customer

   count   

-----------

150000000

(1 row)

Time: 1235.801 ms

tpch_1t=# select count(*)from lineitem

   count    

------------

5999989709

(1 row)

Time: 10661.756 ms

2)6个物理节点,(6+6)*6

# select count(*)from customer

   count   

-----------

 150000000

(1 row)

Time: 1346.833 ms

# select count(*)from lineitem

   count    

------------

 5999989709

(1 row)

Time: 18145.092 ms

3)4个物理节点,(6+6)*4

# select count(*)from customer

   count   

-----------

 150000000

(1 row)

Time: 1531.621 ms

# select count(*)from lineitem

   count    

------------

 5999989709

(1 row)

Time: 25072.501 ms

4)TPCH在不通架构模式下的性能比对 ,有19个查询模型,有个别SQL逻辑过于复杂暂时忽略,也是郭运凯同学整理的列表。

在1T基准下的基准测试表现:


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/150786.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-03-21
下一篇2023-03-21

发表评论

登录后才能评论

评论列表(0条)

    保存