求助制备薄膜的SEM截面的问题

求助制备薄膜的SEM截面的问题,第1张

对了,还有一种是针对液体样品的,快速冷冻法,简单说就是液体样品放在液氮中快速冷冻,通过特殊的装置,转移到过渡舱中,再喷金,再转入观察仓。以上三种制备方法基本就全了。这个还需要你多多练习,基本方法就是这些。

吴能友1 叶瑛2 邬黛黛2 刘坚1 张平萍2 蒋宏晨3 董海良3 张欣1 张学华1 雷知生1

(1.广州海洋地质调查局 广州 510075 2.浙江大学地球科学系 杭州 310027 3.美国迈阿密大学地质系 俄亥俄 45056 美国)

第一作者简介:吴能友,男,1965年生,博士,现任广州海洋地质调查局副总工程师,教授级高工,主要从事海洋构造地质、第四纪地质与环境、水合物调查研究。

摘要 研究所用样品由“海洋四号”船于2005年8月在三亚市SEE 方向约150km处采取。XRD和扫描电镜观察表明样品普遍存在自生碳酸盐、硫酸盐和草莓状(framboidal)黄铁矿。自生矿物组合和显微结构特征与冷泉沉积物类似,属微生物成因。孔隙水中Mg2+、Ca2+和硫酸根的浓度均有随深度增加而降低的趋势,说明这些组分在成因过程中被消耗。成岩反应过程中的溶解二氧化碳可能来自甲烷的厌氧氧化。样品中硫酸根的消耗主要和硫酸盐矿物沉淀有关,而非硫酸根还原。这意味着造成沉积物中黄铁矿大量沉淀的还原态硫并非来自采样深度,它和甲烷及Ba2+一样,均来自地层更深处。

关键词 自生矿物 甲烷渗漏 早期成岩作用 琼东南盆地

海底甲烷渗漏是一种重要的地质现象。在大陆架和大陆坡,甲烷是冷泉流体的主成分之一[1~2]。富甲烷的冷泉可以看作是石油、天然气、天然气水合物在海底的露头,是勘查海底油气资源的重要线索。此外,甲烷所引起的温室气体效应是二氧化碳的十几倍,在自然环境中经由地质作用排放的甲烷所引起的环境增温效应,可能远远超过了人为排放的二氧化碳[3]。因此,以冷泉为主要形式的甲烷渗漏近年来引起了学术界的广泛关注。

冷泉一般和断裂、底辟、泥火山等构造现象有关,是一种大规模流体排放。除这种形式的甲烷渗漏外,地层中承压流体的扩散作用、有机质生物分解和热解等作用都会引起甲烷朝沉积物~海水界面运移,与此有关的甲烷微渗漏目前尚未引起注意,但它对海底资源勘查和海气相互作用研究同样具有重要意义。为此我们研究了采自琼东南盆地的柱状沉积物样品,从中发现了和甲烷渗漏区类似的矿物学、地球化学和地质微生物学记录。

1 地质背景与样品来源

样品由海洋四号于2005年8月执行HY4-2005-5 航次时采集。采样点的地理坐标为:111°3.71′E,18°1.73′N,水深1508m,位于海南岛三亚市SEE方向约150km处。地质构造单元属琼东南盆地的松西坳陷带,海底地形为平坦陆坡。样品用重力活塞式取芯器采集,样品总长度4.9m,为半流动性粉砂质软泥、粉砂质粘土,含少量有孔虫。

琼东南盆地位于南海西北部,发育在海南岛隆起和西沙隆起之间(图1)。钻井资料显示,琼东南盆地前新生代基底可以和海南岛的同期地层对比,由古生代变质岩、白云岩,白垩纪中酸性花岗岩、闪长岩和火山碎屑岩组成,属于华南地块的组成部分[4]。琼东南盆地的发育始于30~24Ma前,盆地主要为广阔陆表海和陆架陆坡沉积体系,最大沉积厚度为12000余米[5]。

图1 采样站位与地质背景示意图

Fig.1 Map of site and geological background of sample

琼东南盆地第四纪泥沙质沉积厚度巨大,并富含有机质,为烃类气体提供了丰富来源[6]。盆地内普遍具有高地温梯度[7]和异常高压[11],有利于烃类气体的形成及扩散运移。自20世纪80年代在琼东南盆地进行油气勘探以来,先后发现了一批天然气田和含油气显示的构造圈闭,何家雄等[8]把琼东南盆地的富甲烷气体划分为生物—低熟过渡带气、正常成熟热成因油气、和热成因过成熟油气三种类型。盆地内天然气水合物的聚集条件亦得到充分肯定[9]。盆地内部分地区已发现了泥火山、泥底辟、气烟囱等与甲烷渗漏流有关的构造[6,10],但在采样区附近尚未有这些现象的报道。

2 实验与测试方法

样品到达甲板后即连同样品衬筒锯成约80cm的长度,两端用塑料盖与胶带密封,并置于温度为4℃的甲板冷库保存。海洋四号靠岸后在广州地质调查局化学分析实验室对样品进行分割,每隔10cm在柱状样的中部提取一个子样。全部操作在氮气保护下进行,避免接触空气。分割后的子样密封在玻璃培养瓶中,4℃冷藏保存。进一步实验在美国Miami大学完成。

对柱状沉积物样品作了如下分析:

1)XRD(X射线衍射)分析:取适量样品在60℃烘箱中干燥,研磨至小于200目,用美国Scintag公司的XGEN-4000型X-ray衍射仪获取样品的衍射曲线,扫描范围5°~70°,扫描速度2°/min。

2)SEM(扫描电镜)观察:取少许样品在液氮中冷冻后抽真空直至脱水干燥,将块状样品轻轻压碎,用碳胶固定在样品托上,喷金后在扫描电镜下观察沉积物的显微结构。

3)孔隙水的提取与分析:样品置于离心管中,高速离心后分离上清液,用HPLC(High Performance Liquid Chromatography,即高性能液相色谱仪)and DCP(Direct Current plasma emission spectrometry,即等离子光谱仪)分别测定提取液中的阴离子和阳离子含量。

3 结果与讨论

3.1 沉积物中的自生矿物及其显微结构

XRD分析结果显示,所研究的沉积物样品中主要矿物为石英、钠长石、伊利石、高岭石,其次为磁绿泥石、白云母、钾长石、方英石等。除这些典型的陆源碎屑矿物外,XRD在样品中还发现有碳酸盐、硫酸盐、黄铁矿和水镁石(表1)。在扫描电镜下这些矿物具有完整的晶型,面、角、棱等结晶要素保存完好,显然没有经历过搬运和磨蚀,除方解石外,它们都是原地形成的自生矿物。

表1 琼东南盆地采样站位沉积物中的自生矿物组合 Table1 Complicated authigenic mineralS in the Sediment from Qiongdongnan BaSin

XRD检出的碳酸盐类矿物有:

方解石(Calcite,卡片号86-174),代表性衍射峰为:3.3,2.49,2.28,2.30Å;

高镁方解石(Mg-calcite,卡片号71-1663),代表性衍射峰为:3.00,2.26,1.89,1.85Å;

三水菱镁矿(Nesquehonite,卡片号20-669),代表性衍射峰为:6.48,3.85,2.62,3.03Å;

菱镁矿(Magnesite,卡片号 80-101),代表性衍射峰为:2.746,2.099,1.708,1.702Å;

菱铁矿(Siderite,卡片号83-1764),代表性衍射峰为:3.59,2.79,1.73Å。

方解石是沉积物的主要成分之一,大部分为有孔虫壳体,属生物成因。高镁方解石和三水菱镁矿在XRD衍射图谱上较常见,菱镁矿和菱铁矿仅在个别样品中的XRD图谱可以识别。部分方解石具有文石假象,在扫描电镜下这种方解石呈针状、纤维状碳酸盐集合体产出,能谱显示为碳酸钙,从晶型和结晶习性上看为文石,但在XRD衍射图谱上未见文石衍射峰,可以认为它们在形成时是文石,但在早期成岩作用转变成了方解石,并保留了文石假象。一般认为这种针状、纤维状文石在成因上和嗜甲烷微生物的代谢作用有关。Sassen等[12]在冷泉碳酸盐中发现针状文石、球状黄铁矿与菌丝、沥青共生;细菌触发并促进自生碳酸盐沉淀业已被培养实验所证实[13~14]。Ehr1ich[15]通过实验室细菌培养,得到了针状文石的半球状、哑铃状集合体。在扫描电镜下还见有碳酸盐微晶被菌丝粘结所形成的球状体,进一步说明碳酸盐集合体和微生物之间存在某种成因联系。高镁方解石和三水菱镁矿在扫描电镜下为自形菱面体晶型,通常包覆在颗石藻、硅藻等生物壳体表面。

在活动和被动大陆边缘的甲烷渗漏区周围,自生碳酸盐是普遍存在的沉淀物[12~22]。此类碳酸盐沉积因具有特殊的显微结构特征,被认为和地质历史上的甲烷渗漏或水合物分解有关[2,16]。尽管在采样站位尚未发现有冷泉等大型甲烷渗漏,但沉积物中复杂的碳酸盐类自生矿物组合说明孔隙水中含有丰富的重碳酸根,甲烷微渗漏及其氧化是重碳酸根的可能来源。

XRD检出的硫酸盐类矿物有:

重晶石(Barite,卡片号78-1224),代表性衍射峰为:4.28,3.71,2.62,2.24Å;

硬石膏(Anhydrte,卡片号 37-1496),代表性衍射峰为:3.50,2.85,2.33,2.21Å;

石膏(gypsum,卡片号21-816),代表性衍射峰为:7.61,4.28,2.87,2.68Å。

在扫描电镜下重晶石呈短柱状,全自形结构。在ODP秘鲁陆缘684站位和日本海799站位钻孔中含有自生重晶石微晶,它们比海水更富含34S(δ34S比值高达+84%o)。Torres等人[23]在解释这类重晶石的成因时认为,Ba的来源和海洋生物成因的重晶石在硫酸盐还原带被活化有关,所形成的Ba2+离子随流体迁移,随后在成岩过程沉淀在流体扩散的前锋带。在秘鲁和俄罗斯Okhotsk海冷泉区,重晶石是冷泉沉淀物的主矿物相。自生重晶石与碳酸盐的相对丰度,在一定程度上反映出孔隙流体中甲烷与Ba2+离子的相对含量。A1oisi等人[21]通过理论模式计算认为,甲烷流量大时,沉淀物以碳酸盐为主;甲烷通量小、而Ba含量高时,则有大量重晶石沉淀。采样站位普遍存在的重晶石一方面说明流体扩散作用的存在,此外也说明孔隙水中甲烷含量不高。石膏和硬石膏在扫描电镜下呈板条状,全自形结构。自生石膏和硬石膏的存在说明孔隙水中仍有较高的硫酸根含量。

XRD在大多数样品中都发现有黄铁矿(Pyrite,卡片号71-2219),代表性衍射峰为:2.709和2.423°A。在扫描电镜中,黄铁矿呈单颗粒散布在沉积物中,或者呈草莓状集合体产出。对草莓状黄铁矿的成因尚有不同认识。一方面沉积物中的草莓状黄铁矿常与微生物化石和细菌群体伴生,但在热液、火山热液矿石中也常见有类似的结构,使微生物成因说受到怀疑[17]。但从最近报道的草莓状黄铁矿硫同位素组成来看,沉积物和低温热液沉淀物中草莓状黄铁矿的δS34均为很大的负值,说明这类黄铁矿中的硫来源于细菌还原的海水硫酸盐[17~19]。

3.2 孔隙水的化学成分与成岩反应

琼东南采样站位孔隙水的化学成分列于表2。其中氨离子浓度随深度增加而明显升高,可能和微生物代谢作用有关。镁离子随深度增加略有降低的趋势,而钙离子随深度增加而降低的趋势更加明显。反应在Mg/Ca比值上,该比值与深度有明显的正相关关系(图2)。其可能原因是,由于重碳酸根的带入,孔隙水中 Ca2+离子的沉淀速率要高于Mg2+离子。从矿物的溶解~沉淀平衡角度上看,碳酸钙的容度积远小于碳酸镁,前者更易于从溶液中沉淀。孔隙水中Ca、Mg的消耗,以及自生矿物组合中普遍存在方解石(具文石假象)、高镁方解石、三水菱镁矿等碳酸盐,说明在成岩反应过程中的有溶解二氧化碳的补充,而溶解二氧化碳可能来自甲烷的厌氧氧化。

表2 琼东南盆地采样站位沉积物中孔隙水的化学成分(mg/L) Table2 Chemical compoSitionS in pore Water of the Sediment from Qiongdongnan BaSin(mg/L)

图2 孔隙水中Mg/Ca比值与深度关系

Fig.2 Relation between Mg/Ca and depth in pore Water

孔隙水中硫酸根浓度与深度关系

Relation between concentration and depth

在阴离子含量上,采样站位的硫酸根含量随深度增加呈现出递减趋势(图2),反映出硫酸根在成岩作用中被消耗。和甲烷渗漏区相比,研究区沉积物中的硫酸根梯度十分平缓,硫酸根/甲烷界面(即SMI)远在采样深度之下。孔隙水中硫酸根的消耗有两种可能的方式:被硫酸根还原菌还原为H2S,或者是呈硫酸盐沉淀。鉴于微生物基因测试在样品中未发现硫酸根还原菌的基因序列[20],因此图2反映的硫酸根消耗最大可能是呈硫酸盐沉淀,XRD和扫描电镜观察到的自生重晶石、石膏和硬石膏为此提供了直接证据。这同时意味着,造成沉积物中黄铁矿大量沉淀的还原态硫并非来自采样深度,硫化氢和甲烷一样,可能来自地层更深处。

4 结论

综合自生矿物组合以及孔隙水化学成分及其代表的成岩反应,对研究区甲烷微渗漏的地质和地质微生物记录作如下总结:

1)XRD和扫描电镜在样品中观察到了多种自生碳酸盐矿物,如:具文石假象的方解石、高镁方解石、三水菱镁矿、菱镁矿、菱铁矿等。其中文石~方解石的显微结构特征与冷泉碳酸盐类似,属微生物成因。沉积物中复杂的碳酸盐类自生矿物组合说明孔隙水中含有丰富的重碳酸根,重碳酸根的来源以及碳酸盐的沉淀和嗜甲烷微生物有成因联系。

2)样品中普遍存在重晶石、硬石膏、石膏等硫酸盐矿物。自生重晶石的形成和来自深部硫酸根还原带的Ba2+离子随流体迁移,并沉淀在流体扩散的前锋带有关,自生矿物中重晶石与碳酸盐的相对丰度,在一定程度上反映出孔隙流体中甲烷与Ba2+离子的相对含量,从这一意义上说,研究区孔隙水中甲烷浓度不高。

3)孔隙水中Mg2+、Ca2+浓度均有随深度增加而降低的趋势,后者更为明显。这一趋势反映了Ca、Mg在成因过程中被消耗,与XRD和SEM观察到的自生碳酸盐沉淀相一致,说明在成岩反应过程中的有溶解二氧化碳的补充,而溶解二氧化碳可能来自甲烷的厌氧氧化。

4)孔隙水中的硫酸根含量亦具有随深度增加而降低的趋势。和甲烷渗漏区相比,研究区沉积物中的硫酸根梯度十分平缓,硫酸根/甲烷界面(即SMI)远在采样深度之下。样品中硫酸根的消耗主要和硫酸盐矿物沉淀有关。这意味着造成沉积物中黄铁矿大量沉淀的还原态硫并非来自采样深度,它和甲烷及Ba2+一样,可能来自地层更深处。

参考文献

[1]Peckmann,J,Reimer,A,Luth,U.,et al.Methane-derived carbonatesand authigenic pyrite from the northWestern Black Sea.Marine Geology,2001,177:129~150

[2]Pierrea,C,Rouchy,J M.Isotopic compositions of diagenetic dolomites in the Tortonian marls of the Western Mediterranean margins:evidence of past gas hydrate formation and dissociation.Chemical Geology,2004,205:469~484

[3]Etiope,G.New Directions:GEM—Geologic Emissionsof Methane,the missing source in the atmospheric methane budget.Atmospheric Environment,2004,38:3099~3100

[4]钟志洪,王良书,李绪宣等.琼东南盆地古近纪沉积充填演化及其区域构造意义.海洋地质与第四纪地质,2004,24(1):29~36

[5]黄保家.琼东南盆地天然气潜力及有利勘探方向.天然气工业,1999,19(1):34~40

[6]吴必豪,张光学,祝有海等.中国近海天然气水合物的研究进展.地学前缘,2003,10(1):177~188

[7]刘建章,王存武.莺-琼盆地热流体及油气地质意义.天然气勘探与开发,2004,27(1):12~15

[8]何家雄,夏斌,孙东山等.琼东南盆地油气成藏组合、运聚规律与勘探方向分析.石油勘探与开发,2006,33(1):53~58

[9]何家雄.天然气水合物研究进展和南海北部勘探前景初探.海洋石油,2003,23(1):57-64

[10]陈多福,李绪宣,夏斌.南海琼东南盆地天然气水合物稳定域分布特征及资源预测.地球物理学报,2004,47:483~489

[11]王敏芳.琼东南盆地超压特征及超压体与油气分布的关系.海洋石油,2003,23(1):15~21

[12]Sassen,R,Roberts,H H,Carney,R,et al.Free hydrocarbon gas,gas hydrate,and authigenic minerals in chemosynthetic communities of the northern Gu1f of MeXico continental slope:relation to microbial processes.Chemical Geology,2004,205:195~217

[13]Van Lith,Y,Warthmann,R,Vansconcelos,C,et al.Microbial fossilization in carbonate sediments:a result of the bacterial surface involvement in dolomite precipitation.Sedimentology,2003,50:237~245

[14]Wright,D T,Wacey,D.precipitation of dolomite using sulphate-reducing bacteria from the Coorong Region,South Australia:significance and imp1ications.Sedimentology,2005,52:987~1008

[15]Ehr1ich,H L.Microbial formation and degrafation of carbonates.Geomicrobiology,4thedition,Marcel Dekker,Inc.,New York,2002,PP 183~228

[16]Cavagna,S,Clari,p,Martire,L.The role of bacteria in the formation of cold seep carbonates:geological evidence from Monferrato(Tertiary,NW Italy).Sedimentary Geology,1999,126:253~270

[17]Butler,I B,Rickard,D.Framboidal pyrite formation via the oXidation of iron(II)monosulfide by hydrogen su1phide.Geochimica et Cosmochimica Acta,2000,64(15):2665~2672

[18]Wilkin,R T,Arthur,M A.Variations in pyrite teXture,sulfur isotope composition,and iron systematics in the Black Sea:Evidence for Late pleistocene to Holocene eXcursions of the O2-H2S redoX transition.Geochimica et Cosmochimica Acta,2001,65(9):1399~1416

[19]A1fonso,P,prol-Ledesma,R M,Canet,C,et al.Sulfur isotope geochemistry of the submarine hydrothermal coastal vents of punta Mita,MeXico.Journal of Geochemical E”ploration,2003,78-79:301~304

[20]Jiang,H C,Ye,Y,Dong H L,Wu,N Y,Zhang,C L,Microbial Diversity in the Deep Marine Sediments from the Qiongdongnan Basin in South China Sea.Western pacific Geophysics Meeting,24-27 July 2006,Beijing

[21]Aloisi,G,Wallmann,K,Bollwerk,S M,et al.The effect of dissolved barium on biogeochemical processes at cold seeps.Geochimica et Cosmochimica Acta,2004,68(8):1735~1748

[22]Teichert,B M A,Bohrmann,G,Suess,E.Chemohermson Hydrate Ridge-Unique microbially-mediated carbonate build-ups groWing into the Water column.palaeogeography,palaeoclimatology,palaeoecology,2005,227:67~85

[23]Torres,M E,Brumsack,H J,Bohrmann,G,et al.Barite fronts in continental margin sediments:A neW look at barium remobilization in the zone of sulfate reduction and formation of heavy barites in diagenetic fronts.Chemical Geology,1996,127:125~139

Geochemical CharacteriSticS of SedimentS from SoutheaSt Hainan BaSin,South China Sea andMicro-Methane-Seep Activity

Wu Nengyou1 Ye Ying2 Wu Daidai2 Liu Jian1 Zhang PingPing2 Jiang Hongchen3 Dong Hai1iang3 Zhang Xin1 Zhang Xuehua1 Lei Zhisheng1

(1.Guangzhou Marine Geology Survey,Guangzhou 510075;2.Department of Earth Sciences,Zhejiang University,Hangzhou 310027;3.Department of Geology,Miami University,OXford,Ohio 45056,USA)

AbStract:The researched samples Were taken from Qiongdongnan Basin,some 150kmin the SEE of Sanya.Complicated authigenic minerals Were identified by XRD and SEM,such as miscellaneous carbonates,sulphates and frambiodal pyrite.The assemblage and fabric characters are similar to what being found in cold-seep sediments,Which is thought to be related With microorganisms fueled by dissolved methane.There is a tendency that Mg2+,Ca2+ and content in pore water decreased with depth.The cations are consumed in diagenesis ascarbonates,With the dissolved CO2be supplied by anaerobic methane oxidation.The anion Was precipitated as sulphate,instead of being reduced.This means that H2S to form frambiodal pyrite is from depth,the same as methane and Ba2+.

Key WordS:Authigenic minerals Methane seep Early diagenesis Qiongdongnan Basin

盖国胜1杨玉芬2,1郝向阳1樊世民1蔡振芳1

(1.清华大学 材料系粉体工程研究室,北京 100084;2.清华大学河北清华发展研究院微纳米材料与资源利用研发中心,河北廊坊 065001)

摘要 采用化学方法对无机矿物填料表面进行包覆改性,制备出具有表面纳米化结构的复合矿物颗粒,有效地改善了原有颗粒的表面形貌,提高了比表面积。通过搅拌磨湿法研磨,讨论了包覆颗粒与基体的结合方式,初步证明了包覆颗粒与基体的结合方式为化学吸附,而非物理吸附,两者结合牢固,包覆层不易脱落。包覆矿物颗粒在PP中填充,其复合材料的力学性能有较大的改善[1~15]。

关键词 无机矿物;填料;包覆改性;表面纳米化颗粒。

第一作者简介:盖国胜(1958—),男,博士,副研究员。E-mail:gaigs@tsinghua.edu.cn。

一、引言

微米级超细碳酸钙、硅灰石是塑料或橡胶常用的无机矿物填料,需求量非常大。仅塑料行业每年就需要碳酸钙超细粉超过100×104t[1]。而传统加工技术生产的碳酸钙超细粉具有锐利的棱角和平整的晶体解理面,与聚合物的相容性差。采用偶联剂或表面活性剂进行改性,不能从根本上解决颗粒表面固有的形貌缺陷,而这些部位在微观上易成为复合材料内部的薄弱点,是导致复合材料失效的原因之一[2,3]。

纳米碳酸钙生产成本低,技术成熟,但团聚严重,均匀分散困难,在聚合物中填充难以体现纳米颗粒特有的性能[4~6]。作者利用Ca(OH)2-H2O-CO2体系制备的复合矿物颗粒发挥了微米、纳米颗粒各自的优势,弥补了颗粒形貌的不足。

二、方法与步骤

将640 g平均粒度5.2μm的重质碳酸钙微粉(山东宏达水泥有限责任公司),浓度8%、760 mL氢氧化钙溶液和700 mL热水置于反应釜中,调节矿浆温度25~30℃,充分搅拌,转速400 r/min。矿浆循环流量20 mL/s。30%的纯二氧化碳与70%的空气混合,通入反应釜,继续搅拌使气—固—液三相充分混合。PB-10型pH计用于矿浆酸碱度的在线监控,当pH值为7时,结束反应,反应持续约20 min。停止通气,过滤矿浆,烘干滤料,所得固体物料即为经表面纳米化修饰的复合碳酸钙填料。

研究表明,合理调节操作参数,如氢氧化钙浓度、矿物添加量、粒度、添加时间、CO2流量、搅拌强度和矿浆温度,同样能制备出表面粗糙的复合硅灰石、复合白云石和复合粉煤灰填料。

反应生成物纳米碳酸钙将依据异质形核原理在无机矿物颗粒表面沉积、形核、生长,实现表面纳米化修饰。由相变热力学可知[7,8],成核晶体和晶核的原子排列越相似,异质形核自由能与均质形核自由能相比就越小,异质形核自由能越小,越有利于异质形核。矿浆中添加重质碳酸钙、硅灰石等无机矿物微粉后,从热力学的角度可以证明纳米CaCO3生成物易于在这些颗粒表面成核、生长,达到表面纳米化修饰的目的。

使用的测试设备为:CSM-950 型和 CJSM-6301F型扫描电子显微镜,用于颗粒形貌观察;NOVA4000高速自动比表面仪,用于比表面积测定;PHI5300型XPS多功能电子能谱仪,分析固体样品表面的元素组成及化学状态;自制的湿法搅拌磨,检测包覆颗粒与基体的结合强度;φ30×45平行同向混炼型双螺杆挤出机和150 ZP型注塑机,用于制备力学性能检测样条。

三、结果与讨论

(一)表面形貌

笔者在Ca(OH)2-H2O-CO2系统中利用自制的装置已成功地制备表面被纳米碳酸钙包覆的无机矿物颗粒,其中碳酸钙颗粒的形貌特征如图1所示。

图1 重质碳酸钙颗粒表面修饰前后的SEM 形貌

(a)原料重质碳酸钙颗粒;(b)、(c)复合重质碳酸钙颗粒

由图1(b)、(c)可见,包覆颗粒大小均匀,粒径80nm左右,包覆率高。与包覆前相比,颗粒锐利的棱角被钝化,表面粗糙度提高,粉碎过程中形成的平整解理面已不复存在,取而代之的是纳米颗粒包覆层。通过BET测定,包覆后碳酸钙的比表面积由原料的0.66 m2·g-1提高到2.06 m2·g-1,增加了2倍以上;复合硅灰石颗粒的比表面积也由原料的1.74 m2·g-1提高到7.36 m2·g-1。

(二)包覆层与基体结合强度

1.子颗粒实际脱落时的表面能ΔE

为了进一步检验包覆层和基体的结合强度,将复合重钙在搅拌磨中湿法研磨,考察包覆层在球磨介质作用下的脱落情况。

试验采用自制的湿法搅拌磨,由Φ110mm静止磨筒与多层叶片的搅拌器构成,Φ1mm的氧化锆球作研磨介质,加入100 g物料和适量的水。电动机通过变速装置带动搅拌器旋转,转速355 r/min。研磨介质与物料作多维循环和自转运动,上下、左右产生剧烈置换,物料从而受到摩擦、冲击、剪切等作用[2]。复合碳酸钙粉在研磨30 min、45 min、60 min后的形貌变化如图2-(a)、(b)、(c)所示。

图2 复合碳酸钙粉研磨后的SEM 形貌

(a) 30 min;(b) 45 min;(c) 60 min

从图2可以看出:研磨30 min,表面仍被纳米颗粒所包覆,几乎没有发生变化;45 min时包覆颗粒有少量脱落;研磨到60 min时,包覆层全部脱落,并见明显的凹痕。搅拌磨中,单位体积磨球的动能EiB可用下式表示[9]:

中国非金属矿业

式(1)中:D为搅拌磨直径,0.11 m;DR为搅拌器直径,0.09 m;ζ为常数,0.0082;u为周向速度,0.836 m/s;ρB为磨球的密度,6310 kg/m3。从单位体积磨球动能EVB可导出有效区颗粒吸收能 :

中国非金属矿业

式(2)中:VB为磨球体积,7.924×10-5m3;VB为有效区体积,1.161×10-4m3;ρM为颗粒相对密度,2710 kg/m3;εM为被研磨颗粒自然堆积状态时的孔隙率,可忽略不计。假设颗粒在有效区内均匀分布且颗粒粒径大小均一,可由EM求出单个颗粒平均吸收能Em:

中国非金属矿业

式(3)中:M为有效区内颗粒的质量,0.1 kg;Da为被处理物料的平均粒径,5.36×10-6m;N1为有效区内的颗粒数量,2.625×1010;则Em=8.46×10-13J。

由图2可知,研磨45 min时,包覆颗粒开始脱落,此时单个颗粒的吸收能E为

中国非金属矿业

式(4)中:t为球磨时间,2700s。

根据颗粒的粉碎研磨理论,颗粒破碎过程中所吸收能量的5%~25%被转化为颗粒新增的表面能ΔE[10~14]。若以5%计算,则复合颗粒开始脱落时新增的表面能ΔE=1.14×10-10J。也就是说,只有表面能达到ΔE时,表面包覆的颗粒才开始脱落。

2.预测包覆颗粒脱落时的表面能ΔE′

假设重质碳酸钙母颗粒为立方体,表面包覆层为单层包覆,包覆层内所有子颗粒均是相同直径的球形颗粒,脱落前后颗粒表面积的变化值可表示为ΔS(m2):

中国非金属矿业

式(5)、(6)、(7)中:S1为包覆层脱落前颗粒的表面积,m2;S2为包覆层脱落后子颗粒与母颗粒的总表面积,m2;Dc为母颗粒的粒径,5.2×10-6m;d为子颗粒直径,8×10-8m;N2为子颗粒个数。

子颗粒完全从母颗粒表面脱落时,表面能的增加值ΔE′应为

中国非金属矿业

式(8)中:γc为碳酸钙表面能,0.08J/m2[11],可得ΔE′=3.894×10-11J。也就是说,当颗粒表面能增加到ΔE′时,子颗粒就可以从母颗粒表面脱落。

由计算可知,子颗粒实际脱落时的ΔE大于ΔE′,因此推断:子颗粒与母颗粒的结合方式应为化学吸附而非物理吸附,即子颗粒和母颗粒共生为一体。对复合硅灰石粉体做同样的试验,结果也是一致的。

(三) XPS分析

为了进一步分析包覆颗粒的表面特征,采用X射线光电子能谱(XPS)对硅灰石原料与复合硅灰石进行了分析。试验条件:硅灰石粉体600 g,平均粒度4.89μm,由北京国利超细粉公司提供,氢氧化钙溶液浓度6%,850 mL,矿浆温度30℃,转速400 r/min,矿浆循环流量20 mL/s。包覆前后硅灰石颗粒表面含有Ca、Si、C、O四种元素,其元素含量的变化和结合能的变化分别列于表1、表2。

分析表1,可发现硅灰石颗粒表面经纳米化修饰后,Ca元素的含量明显增多。Ca元素相对Si元素其比例也明显增大,Ca/Si之比由原料的约1∶1增加到包覆后的2∶1。

表1 硅灰石颗粒表面元素含量(wB/%)

注:反应10 min后所取样品为1#,反应结束时样品为2#。

表2 硅灰石颗粒表面各元素的结合能(eV)

分析表2,发现C、Ca、Si、O元素的峰位均发生了一定的化学位移。原料硅灰石表面C元素峰位为284.8,应为污染碳,其表面本身没有碳键。Ca元素的结合能在硅灰石颗粒表面纳米化修饰过程中呈降低趋势。初始阶段,Ca元素主要处于>SiO3的化学环境中,由于Si元素的电负性较大,Ca原子周围电子浓度较低,对其内层电子的屏蔽作用减弱,Ca原子的内层电子结合能较大。随着反应的进行,纳米碳酸钙不断在硅灰石颗粒表面沉积,即表面Ca原子周围逐渐由>SiO3的化学环境转变为>CO3的化学环境。而C元素的电负性要比Si元素小,因此Ca原子周围的电子密度将有所增加,对其内层电子的屏蔽作用增强,从而Ca原子的内层电子结合能变小,表现为其XPS峰位值减小。反应结束后,硅灰石表面逐渐被纳米碳酸钙覆盖,Ca元素的结合能与纯碳酸钙样品中Ca元素的结合能是一致的。结合XRD物相分析[15],可推断:硅灰石颗粒表面包覆颗粒应为纳米碳酸钙。

(四)填充

对聚丙烯(PP),分别以未包覆和包覆后的重质碳酸钙作填料进行填充性能试验,填充前使用硬脂酸进行改性。经双螺杆挤出机和注塑机按GB1040-92注射成型,在液氮气氛下冷冻,快速冲击,断口表面喷金,SEM观察断口形貌,如图3所示。

图3表明:未经包覆的碳酸钙直接在PP中填充,其颗粒和PP基体的界面结合松散,可见明显的沟壑和裂缝,见图3-(a)。而包覆碳酸钙颗粒与PP 基体的界面结合紧密,相容性较好,见图3-(b)。这是因为复合颗粒粗糙的表面及钝化的棱角增加了与 PP 基体接触的机会,改善了界面结合性能。

图3 PP基复合材料断口的SEM形貌

(a)填充未包覆重质碳酸钙颗粒;(b)填充包覆重质碳酸钙颗粒

四、结论

1)在Ca(OH)2-H2O-CO2系统中,借助异质形核原理能有效地改善无机矿物颗粒的表面形貌,表面粗糙,比表面积提高2倍以上。

2)包覆颗粒通过化学吸附牢固地与被包覆颗粒结合,不易脱落。

3)包覆后的粉体作填料,改善了PP复合材料的界面结合性能。

参考文献

[1]刘英俊.非金属矿物在塑料工业中应用现状及发展趋势.中国非金属矿工业导刊,2003,增刊:6-12

[2]盖国胜.超细雨粉碎分级技术,(第一版) .北京:中国轻工业出版社,2000,261-272

[3]Sutherland I,Maton D,Harrison D L.Filler surfaces and composite properties.Composite Interfaces,1998,5(6):498-502

[4]吴春蕾,章明秋,容敏智.纳米SiO2表面接枝聚合改性及其聚丙烯基复合材料的力学性能.复合材料学报,2002,19(6):61-67

[5]刘阳桥.高濂(Liu YanQiao,et al.)纳米Y-TZP悬浮液的团聚抑制研究.无机材料学报(Journal of Inorganic Materials),2002,17(6):1292-1296

[6]许育东,刘宁,曾庆梅等.纳米改性金属陶瓷的组织和力学性能.复合材料学报,2003,1:33-37

[7]吴德海,任家烈,陈森灿.近代材料加工原理,北京:清华大学出版社,1997,115-117

[8]崔爱莉,王亭杰,金涌等.二氧化钛表面包覆化硅纳米膜的热力学研究.高等学校化学学报,2001,22(9):1543-1545

[9]张平亮.湿式搅拌磨微粉碎技术的研究.化工装备技术,1995,16(6):26-31

[10]Fuerstenau D W,Abouzeid A Z M.The energy efficiency of ball milling in comminution.Inter.J.Miner.Process.,2002,(67):161-185

[11]郑水林.超细粉碎.北京:中国建材工业出版社,1999,36-42

[12]Zemskov E P.Time-dependent particle-size distributions in comminution.Powder Technology,1999,102:71-74

[13]Gutsche 0,Fuerstenau D W.Fracture kinetics of particle bed comminution—ramifications for fines production and mill optimization.Powder Technology,1999,105:113-118

[14]Alberto Carpinteri,Nicola Pugno.Intern.A fractal comminution approach to evaluate the drilling energy dissipation.J.Numer.Anal.Meth.Geomech.,2002,26:499-513

[15]樊世民,杨玉芬,盖国胜等.表面纳米化硅灰石复合颗粒的制备研究.稀有金属材料与工程,2003,32(增刊1):702-705

Nanosized Particles Coating of Inorganic Mineral Filler Surface & Characterization

Gai Guosheng1,Yang Yufen2,1,Hao Xiangyang1,Fan Shimin1,Cai Zhenfang1

(1.Powder Technology R & D Group,Department of Material Science and Engineering,Tsinghua University,Beijing 100084,China;2.Micron-Nano Materials & Resource Utilization R &D Center,Institute of Tsinghua University,Hebei Tsinghua Science Park,Langfang Economic Development Zone,Jinyuan Road,Langfang,065001,Hebei,China)

Abstract:Composite mineral particles with nano-structured surface,which effectively improve surface morphology of the originals and increase specific surface area,had been successfully prepared by using chemical method.Through wet grinding in stirring mill,coalescence between coating particles and the base was investigated.The preliminary conclusion gained showed that coating particles are not easy to be peeled off from the base because of chemical absorption.The mechanical properties of the composite were greatly improved,when the coated mineral particles were filled in polypropylene.

Key words:inorganic mineral,filler,coating,surface nano-structured particle.


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/151942.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-03-21
下一篇2023-03-21

发表评论

登录后才能评论

评论列表(0条)

    保存