关于零维MOF材料的合成你知道多少?

关于零维MOF材料的合成你知道多少?,第1张

迄今为止,零维 MOF材料已经通过多种方式合成,这些合成方式主要依赖于在溶剂热或水热条件下MOF晶体成核和生长的空间和时间控制。2006年,已有科学家提出了一种名为“微波辅助溶剂热合成”的新合成方法,该方法利用微波加热使含有反应物的有机溶剂和水的混合溶液迅速蒸发,在1 min内合成高质量的金属有机骨架晶体。科学家们利用极性溶剂如二乙基甲酰胺(DEF)的高介电吸收能力,使反应溶液能快速进行热能转换和 有效的局部加热,从而实现快速成核和晶体生长,成功合成了IRMOF-1、IRMOF-2和IRMOF-3纳米颗粒。自此,许多研究者也成功地采用这种方法来高效和选择性地合成各种 MOF 纳米颗粒。 除了通过不同类型的能量转换控制尺寸外,零维MOF纳米粒子还可以通过利用界面反应和限制反应 区的形状来控制合成。科学家们使用表面活性剂限制合成 MOF 颗粒的尺寸,并将表面活性剂作为中孔分子筛的模板来形成微孔MOF 结构。由于 CO2 和碳氟化合物表面活性剂尾部之间的相互作用很强,N乙基全氟辛基磺酰胺(N-EtFOCA)和离子液体(ILs)在超临界 CO2(SCCO2)中形成微乳液。 在合成过程 中,将 Zn(NO3)2、1,4-苯二甲酸和 N-EtFOCA 添加到 1,1,3,3-乙酸四甲基胍盐(TMGA)中,并在 16.8 MPa CO2 压力下的高压槽中加热。 从扫描和透射电子显微镜像可以观察到,纳米颗粒的直径约为 80 nm,尺寸分布均匀,高倍率的透射图像中可以观察到 MOF 纳米球中包含有序的孔道,这些 MOF 纳米球的微孔和中孔的存在可以增强材料的传质过程,在气体分离和催化中具有潜在的应用。

今年mof材料这么火的原因:

导电MOF材料兼备较高的电导率、较大的SSA、较丰富的活性位点以及较大的孔道结构等优势,与其他传统的储能材料如碳材料、金属氧化物材料等相比,更具结构上的优势,尤其在电化学储能相关领域中的应用愈来愈广,无论是在电催化,还是在可充电电池、超级电容器中,均展现出优越的电化学行为。

金属-有机框架材料(MOFs)是近十年来发展迅速的一种配位聚合物,具有三维的孔结构,一般以金属离子为连接点,有机配位体支撑构成空间3D延伸,是沸石和碳纳米管之外的又一类重要的新型多孔材料,在催化、储能和分离中都有广泛应用。目前,MOF已成为无机化学、有机化学等多个化学分支的重要研究方向。

导电MOF多是由过渡金属离子和含有共轭结构的有机配体交联而成,其结构多样。目前导电MOF按照晶体结构不同可以分为2维(2D)和3维(3D)两类,其中2D MOF占据主体地位,3D导电MOF则较为少见,且多为有利于质子传输的结构。

2D导电MOF具有规整的晶体结构和高的结晶度,能够归属于七大晶系,因此在结构上的优势更为突出。

jmca影响因子是11.301。

JMCA是英国皇家化学会材料化学领域内具有高影响力的国际期刊,2020年影响因子为11.301。

如果JMCA出影响因子,几乎是最高的。考虑到第一个影响因子是半影响因子,应该能到6左右,之后第二年发布影响因子应该能稳定在7左右。

研究成果:

有鉴于此,该研究提出了一种“锁定”金属离子源的策略实现了MOF晶体在限域空间的可控生长:即以Cu2O作为Cu离子源, 在含有均苯三甲酸(H3BTC)的有机配体溶液中仅通过配体分子从溶液扩散到介孔SiO2空腔内与Cu2O释放的Cu2+(来自Cu+氧化)自组装形成了Cu-BTC。

通过研究发现,Cu2O@SiO2可以作为限域合成MOF晶体的纳米反应器。此外,通过调控H3BTC的浓度和SiO2壳层的厚度,进而调控限域空间内MOF晶体的大小和形貌。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/154551.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-03-22
下一篇2023-03-22

发表评论

登录后才能评论

评论列表(0条)

    保存