扫描隧道显微镜怎样操纵原子

扫描隧道显微镜怎样操纵原子,第1张

用STM进行单原子操纵主要包括三个部分,即单原子的移动,提取和放置。使用STM进行单原子操纵的较为普遍的方法是在STM针尖样品表面之间施加一适当幅值和宽度的电压脉冲,一般为数伏电压和数十毫秒宽度。由于针尖和样品表面之间的距离非常接近,仅为0.3-1.0nm。因此在电压脉冲的作用下,将会在针尖和样品之间产主一个强度在 109~1010V/m数量级的强大电场。这样,表面上的吸附原子将会在强电场的蒸发下被移动或提取,并在表面上留下原子空穴,实现单原子的移动和提取操纵。同样,吸附在STM针尖上的原子也有可能在强电场的蒸发下而沉积到样品的表面上,实现单原子的放置操纵。

近代以来,由于人们的观察视野已经延伸到了纳米领域,而光束在成像时总会受到有限大小的有效光阑的限制,所以此时光的衍射作用就不容忽略了。对于显微镜来说,其发光物一般距物像很近,这时应考虑菲涅尔衍射,物点成像后在像面上应成为一菲涅尔圆斑,不过通常情况下,我们可以用夫琅禾费圆斑进行近似替代。那么光学显微镜的分辨率最佳只能达到阿贝极限:0.2μm。即便如德国科学家施特芬·黑尔等科学家制作出的借助脉冲激光突破阿贝极限的光学显微镜,分辨率也仅停留在20nm,依然难以满足人们进军微观领域的需要。而且此显微镜价格高昂,在80万欧元左右。事实上,当年白春礼教授仅仅借助从国外带来的几个重要零件并加以组装就得到了STM。一台普通的STM价格都在10万RMB以下。因此我们需要寻找更经济且性能更好的显微镜来替代光学显微镜。

在这种情况下,扫描探针、光导镊子、高解析度电镜就应运而生。其中,运用探针进行进场操作的扫描探针显微技术无疑引起了人们最为广泛的关注。

扫描探针显微术SPM

扫描探针显微技术主要是利用顶端约1-10Å的探针来3D解析固体表面纳米尺度上的局部性质。扫描探针显微镜SPMs就是一系列的基于扫描探针显微术而发展起来的显微镜,它包括STM、AFM、LFM、MFM等等。其中STM和AFM的发明使得各种扫描探针显微技术有了长足的发展,下面我们先来看一下迄今为止衍生出来的主要的扫描探针分析仪:

电子结构:扫描隧道电流镜STS

STS用来在低温情况下测定电子结构;

光学性质:近场扫描光学显微镜NSOM

NSOM打破了衍射限制,允许光进入亚微米波长范围(50-100nm),用于弹性和非弹性的光学扫描测定,也可以用于光刻技术;

温度:热扫描显微镜STHM

STHM用温度传感器绘制出电子/光电子纳米器件的温度场,测定纳米结构的热物理性质;

介电常数:扫描电容显微镜SCM

SCM主要应用在半导体上。由于半导体电容依赖于载流子的浓度,因此研究者可以用SCM绘制出掺杂剂在半导体中的分布图。它优越之处在于纳米尺度上的立体分辨能力;

磁性:磁力共振显微镜MFM

MFM可以给磁域成像作为磁存储介质的综合性表征,MFM测定核与电子的自旋共振并具有亚微米级的解析力,这可能使它成为化学分析的基础;

电荷传递和亥姆霍兹层:扫描电化学SECM

生物分子折叠/识别:纳米机械显微镜

以前只能停留在总体的平均测定,现在可以更深入的测定生物系统的分子现象。

扫描隧道显微镜STM

不过,以上各种仪器只是对STM和AFM的补充和发展。其中STM作为“主角”,意义尤为重大,被国际科学界公认为20世纪80年代世界十大科技成就之一。甚至有人将STM的发明的当年作为纳米科技元年。那么我们不妨具体看一下STM和AFM。

扫描隧道显微镜(scanning tunneling microscope)STM,也称作扫描穿隧式显微镜、隧道扫描显微镜。第一台STM诞生于瑞士的苏黎世研究所。STM可以让科学家观察和定位单个原子,它具有AFM更高的分辨率。STM平行方向的分辨率为0.04nm,垂直方向的分辨率达到0.01nm。此外STM在低温(4K)可以利用探针尖端精确操纵原子。因此STM不仅仅是探测工具,更是加工工具。

如图所示,STM主要构成有:顶部直径约为50-100nm的极细金属针尖(通常是金属钨),用于三维扫描的三个相互垂直的压电陶瓷(Px、Py、Pz),以及用于扫描和电流反馈的控制器。

STM的基本原理是量子的隧道效应。它利用金属针尖在样品的表面上进行扫描,并根据量子隧道效应来获得样品表面的图像。通常STM的针尖与样品的距离非常接近(大约为0.5-1.0nm),所以它们之间的电子云互相重叠。当在它们之间施加一偏值电压V(通常为2mV-2V)时,电子就可以因量子隧道效应实现针尖与样品之间的转移,从而在针尖与样品表面之间形成隧道电流。

其中,K是常数,在真空条件下约等于1,φ为针尖与样品的平均功函数,s为针尖和样品表面之间的距离,一般为0.3-1.0nm。

由于隧道电流I与针尖和样品表面之间的距离s成指数关系,所以,电流I对s的变化非常敏感。一般来说,如果s减小0.1nm,隧道电流I就会减小10倍。

既然STM是靠隧道电流I和距离s进行工作的,那么自然,STM有两种工作模式:恒电流工作模式和恒高度工作模式。恒电流模式就是在STM图像扫描时始终保持隧道电流恒定,它可以利用反馈回路控制针尖和样品之间距离的不断变化来实现。当压电陶瓷Px、Py控制针尖在样品表面上扫描时,从反馈回路中取出针尖在样品表面扫描过程中他们之间距离变化的信息(该信息用来反映样品表面的起伏),就可以得到样品表面的原子图像。由于恒电流模式时,STM的针尖是随着样品表面形貌的起伏而上下移动,针尖不会因为表面形貌起伏太大而碰撞到样品的表面,所以恒电流模式可以用于观察表面形貌起伏较大的样品。恒电流模式也是一种最常用的扫描模式。

恒高度模式则是始终控制针尖的高度不变,并取出扫描过程中针尖和样品之间电流变化的信息(该信息也反映样品表面的起伏),来绘制样品表面的原子图像。由于在恒高度模式的扫描过程中,针尖的高度恒定不变,当表面形貌起伏较大时,针尖就很容易碰撞到样品。所以恒高度模式只能用于观察表面形貌起伏不大的样品。

扫描隧道显微镜具有以下显著的特点:一是STM可以直接观测到材料表面的单个原子和原子在表面上的三维结构图像;二是STM在观测材料表面原子结构的同时得到材料表面的扫描隧道谱STS,从而可以研究材料表面的化学结构和电子状态。

此外,上面我们提到过STM不仅仅是探测工具,更是加工工具。也就是说,STM的针尖不仅可以成像,还可以用于操纵表面上的原子或分子。

用STM进行单原子操纵主要包括三个部分,即单原子的移动,提取和放置。使用STM进行单原子操纵的较为普遍的方法是在STM针尖和样品表面之间施加一适当幅值和宽度的电压脉冲,一般为数伏电压和数十毫秒宽度。由于针尖和样品表面之间的距离非常接近,仅为0.3-1.0nm。因此在电压脉冲的作用下,将会在针尖和样品之间产主一个强度在 109~1010V/m数量级的强大电场。这样,表面上的吸附原子将会在强电场的蒸发下被移动或提取,并在表面上留下原子空穴,实现单原子的移动和提取操纵。同样,吸附在STM针尖上的原子也有可能在强电场的蒸发下而沉积到样品的表面上,实现单原子的放置操纵。

STM的优越性还体现在STM实验还可以在多种环境中进行:大气、惰性气体、超高真空或液体。工作温度可以从绝对零度附近到上千摄氏度。这些都是以前任何一种显微技术都不能同时做到的。

不过在每一种显微电镜中,基础物理学都限制了其测定的范围。STM基于电子隧道,它的成像就受到隧道物理学或入射低能电子影响的弛豫过程限制。而且,STM所观察的样品一定要有一定程度的导电性,否则效果会很差。

原子力显微镜AFM

相比之下,AFM具有更广泛的功能范围,可以响应探针与基质之间更多的力,如磁力、库伦力、色散力、摩擦力和核斥力等,也不会受到材料到点性质的影响。

在AFM中,使用对微弱力非常敏感的弹性悬臂上的针尖对样品表面作光栅式扫描。当针尖和样品表面的距离非常接近时,针尖尖端的原子与样品表面的原子之间存在极微弱的作用力,微悬臂就会发生微小的弹性形变。针尖与样品之间的力F与微悬臂的形变之间遵循胡克定律:F=-k*x。其中,k为微悬臂的力常数。所以,只要测出微悬臂形变量的大小,就可以获得针尖与样品之间作用力的大小。针尖与样品之间的作用力与距离有强烈的依赖关系,所以在扫描过程中利用反馈回路保持针尖与样品之间的作用力恒定,即保持为悬臂的形变量不变,针尖就会随样品表面的起伏上下移动,记录针尖上下运动的轨迹即可得到样品表面形貌的信息。这种工作模式被称为“恒力”模式,是使用最广泛的扫描方式。

AFM的图像也可以使用“恒高”模式来获得,也就是在X,Y扫描过程中,不使用反馈回路,保持针尖与样品之间的距离恒定,通过测量微悬臂Z方向的形变量来成像。这种方式不使用反馈回路,可以采用更高的扫描速度,通常在观察原子、分子像时用得比较多,而对于表面起伏比较大的样品不适用。

微观形貌检测技术

当然,任何一种发明都不是凭空产生的,都是在前人工作的基础上的改进。SPMs也不例外。在STM之前,就有几种微观形貌检测技术了,只不过它们的性能没有这么优越。

光学显微镜

投射电子显微镜TEM

TEM和光学显微镜的原理极为相似,只是用波长极短的电子束代替了可见光现,用静电或磁透镜代替光学玻璃透镜,最后在荧光屏上成像。TEM的放大倍数极高,点分辨率可达0.3nm,线分辨率可达0.144nm,已达原子级分辨率。用TEM观察物体内部显微结构时,可看到原子排列的晶格图像,并已观察到某些重金属原子的投影图像。只是用TEM检测时,试件需在真空室内。

TEM是通过电子束投过试件而放大成像的,电子束在材料中的衰减系数极大,故试件必须加工的很薄,因此限制了TEM的使用范围。

表面轮廓仪

表面轮廓仪是用探针对试件表面形貌进行接触测量,这与SPM的工作原理极为相似,只是后者使用了更尖锐的探针和灵敏的探针位移检测方法。

扫描电子显微镜SEM

SEM利用高能量、细聚焦的电子束在试件表面扫描,激发二次放电,利用二次放电信息对试件表面的组织或形貌进行检测、分析和成像的一种电子光学仪器。SEM的放大倍率在10—150000之间且连续可调,试件在真空室内还可按需要进行升降、平移、旋转或倾斜。

SEM在普通热钨丝电子枪条件下,分辨率为5-6nm,如果用场发射电子枪,分辨率可达2-3nm,不过分辨率还没有达到原子级别。

场发射形貌描绘仪

场发射原理在1956年由R.young提出,但直到1971年R.young和J.Ward才提出了应用场发射原理的形貌描绘仪。它在基本原理和操作上,是最接近STM的仪器。探针尖装在顶块上,可由X向和Y向压电陶瓷驱动,做X向和Y向扫描运动。试件装在下面的Z向压电陶瓷元件上,由反馈电路控制,保持针尖和试件间的距离。R.young使用的针尖曲率半径为几十纳米,针尖和试件间的距离为100nm。在试件上加正高压后,针尖与试件间产生场发射电流。探针在试件表面扫描,可根据场发射电流的大小,检测出试件表面的形貌。R.young用形貌描绘仪继续进行研究,发现当探针尖与试件间距离很近时,较小的外加偏压V即可产生隧道电流,并且隧道电流I对距离s极为敏感。他们观察到的I和V为线性关系,后人估计针尖与试件间的距离为1.2nm。可惜他们的研究到此为止,未在检测试件形貌时利用隧道电流效应,因而与STM的发明失之交臂。假如他能及时想到缩小针尖与试件表面间的距离,那么STM公布发表时的发明人名字就是R.Young了。可惜他没有意识到这一点,更没有去缩短那一点的该死的微小距离。

附:TEM与SEM的比较

比较项目 显微镜类型 TEM SEM

镜身长度 长,要能让电子加速 短,只需要保证与样品间的距离

分辨率 高,能达到原子级别 低,停留在纳米级别

投影图像 平面图形,无立体感 有极强的立体感

图像背景 背景亮,试样处暗 背景暗,试样处亮

工作原理 与光学显微镜类似 利用光电效应产生的电子获得立体图像

收集器位置 在镜身底部 在镜身上部

适用范围 5-500nm的薄片 可以比较厚

能否区分晶体 能,可看到晶格图像 不包含结构信息,无法区分单晶多晶非晶

能否收集到样品内部信息 可收集到样品内部信息 只能收集到样品表层信息

能否动态观察 不能,样品固定 样品位置可以调节,可进行动态观察

能否连续观察 开始工作后倍率相对固定 开始工作后可进行从低倍到高倍的连续观察

SEM、TEM、XRD、AES、STM、AFM的区别主要是名称不同、工作原理不同、作用不同、

一、名称不同

1、SEM,英文全称:Scanningelectronmicroscope,中文称:扫描电子显微镜。

2、TEM,英文全称:TransmissionElectronMicroscope,中文称:透射电子显微镜。

3、XRD,英文全称:Diffractionofx-rays,中文称:X射线衍射。

4、AES,英文全称:AugerElectronSpectroscopy,中文称:俄歇电子能谱。

5、STM,英文全称:ScanningTunnelingMicroscope,中文称:扫描隧道显微镜。

6、AFM,英文全称:AtomicForceMicroscope,中文称:原子力显微镜。

二、工作原理不同

1.扫描电子显微镜的原理是用高能电子束对样品进行扫描,产生各种各样的物理信息。通过接收、放大和显示这些信息,可以观察到试样的表面形貌。

2.透射电子显微镜的整体工作原理如下:电子枪发出的电子束经过冷凝器在透镜的光轴在真空通道,通过冷凝器,它将收敛到一个薄,明亮而均匀的光斑,辐照样品室的样品。通过样品的电子束携带着样品内部的结构信息。通过样品致密部分的电子数量较少,而通过稀疏部分的电子数量较多。

物镜会聚焦点和一次放大后,电子束进入第二中间透镜和第一、第二投影透镜进行综合放大成像。最后,将放大后的电子图像投影到观察室的荧光屏上。屏幕将电子图像转换成可视图像供用户观察。

3、x射线衍射(XRD)的基本原理:当一束单色X射线入射晶体,因为水晶是由原子规则排列成一个细胞,规则的原子之间的距离和入射X射线波长具有相同的数量级,因此通过不同的原子散射X射线相互干涉,更影响一些特殊方向的X射线衍射,衍射线的位置和强度的空间分布,晶体结构密切相关。

4.入射的电子束和材料的作用可以激发原子内部的电子形成空穴。从填充孔到内壳层的转变所释放的能量可能以x射线的形式释放出来,产生特征性的x射线,也可能激发原子核外的另一个电子成为自由电子,即俄歇电子。

5.扫描隧道显微镜的工作原理非常简单。一个小电荷被放在探头上,电流从探头流出,穿过材料,到达下表面。当探针通过单个原子时,通过探针的电流发生变化,这些变化被记录下来。

电流在流经一个原子时涨落,从而非常详细地描绘出它的轮廓。经过多次流动后,人们可以通过绘制电流的波动得到构成网格的单个原子的美丽图画。

6.原子力显微镜的工作原理:当原子间的距离减小到一定程度时,原子间作用力迅速增大。因此,样品表面的高度可以直接由微探针的力转换而来,从而获得样品表面形貌的信息。

三、不同的功能

1.扫描电子显微镜(SEM)是介于透射电子显微镜和光学显微镜之间的一种微观形貌观察方法,可以直接利用样品表面材料的材料性质进行微观成像。

扫描电子显微镜具有高倍放大功能,可连续调节20000~200000倍。它有一个大的景深,一个大的视野,一个立体的形象,它可以直接观察到各种样品在不均匀表面上的细微结构。

样品制备很简单。目前,所有的扫描电镜设备都配备了x射线能谱仪,可以同时观察微观组织和形貌,分析微区成分。因此,它是当今非常有用的科学研究工具。

2.透射电子显微镜在材料科学和生物学中有着广泛的应用。由于电子容易散射或被物体吸收,穿透率低,样品的密度和厚度会影响最终成像质量。必须制备超薄的薄片,通常为50~100nm。

所以当你用透射电子显微镜观察样品时,你必须把它处理得很薄。常用的方法有:超薄切片法、冷冻超薄切片法、冷冻蚀刻法、冷冻断裂法等。对于液体样品,通常挂在预处理过的铜线上观察。

3X射线衍射检测的重要手段的人们意识到自然,探索自然,尤其是在凝聚态物理、材料科学、生活、医疗、化工、地质、矿物学、环境科学、考古学、历史、和许多其他领域发挥了积极作用,不断拓展新领域、新方法层出不穷。

特别是随着同步辐射源和自由电子激光的兴起,x射线衍射的研究方法还在不断扩展,如超高速x射线衍射、软x射线显微术、x射线吸收结构、共振非弹性x射线衍射、同步x射线层析显微术等。这些新的X射线衍射检测技术必将为各个学科注入新的活力。

4,俄歇电子在固体也经历了频繁的非弹性散射,可以逃避只是表面的固体表面原子层的俄歇电子,电子的能量通常是10~500电子伏特,他们的平均自由程很短,约5~20,所以俄歇电子能谱学调查是固体表面。

俄歇电子能谱通常采用电子束作为辐射源,可以进行聚焦和扫描。因此,俄歇电子能谱可用于表面微观分析,并可直接从屏幕上获得俄歇元素图像。它是现代固体表面研究的有力工具,广泛应用于各种材料的分析,催化、吸附、腐蚀、磨损等方面的研究。

5.当STM工作时,探头将足够接近样品,以产生具有高度和空间限制的电子束。因此,STM具有很高的空间分辨率,可以用于成像工作中的科学观测。

STM在加工的过程中进行了表面上可以实时成像进行了表面形态,用于查找各种结构性缺陷和表面损伤,表面沉积和蚀刻方法建立或切断电线,如消除缺陷,达到修复的目的,也可以用STM图像检查结果是好还是坏。

6.原子力显微镜的出现无疑促进了纳米技术的发展。扫描探针显微镜,以原子力显微镜为代表,是一系列的显微镜,使用一个小探针来扫描样品的表面,以提供高倍放大。Afm扫描可以提供各类样品的表面状态信息。

与传统显微镜相比,原子力显微镜观察样品的表面的优势高倍镜下在大气条件下,并且可以用于几乎所有样品(与某些表面光洁度要求)并可以获得样品表面的三维形貌图像没有任何其他的样品制备。

扫描后的三维形貌图像可进行粗糙度计算、厚度、步长、方框图或粒度分析。

▲第一作者:宋丽娜、张伟、王颖;通讯作者:徐吉静教授

通讯单位:吉林大学

论文DOI:10.1038/s41467-020-15712-z

针对锂氧气电池存在的反应动力学缓慢而导致能量转换效率低的问题,研究者通常开发高效、稳定的正极催化剂来降低电池的充电极化电压提高反应动力。该工作将Co单原子固定于掺杂N的碳球壳载体上,用于锂氧气电池的高效催化反应,实验发现Li2O2形成和分解路线与LiO2在单原子催化剂的吸附能有关。研究明确指出,在放电过程中,原子级分散的活性位点能够诱导放电产物的均匀成核和外延生长,最终形成有利的纳米花状放电产物。在充电过程中,CoN4活性中心对放电中间体LiO2弱的吸附能,诱导充电反应由两电子路径向单电子路径转变。 得益于高分散的Co-N单原子催化剂的能级结构和电子结构所发生的根本性变化,大幅提升了电池的充电效率和循环寿命。与同等含量的贵金属基催化剂相比,达到600 mV充放电极化电压的降低和218天的长寿命循环。

锂氧气电池具有锂离子电池10倍以上的理论容量密度,被誉为颠覆性和革命性电池技术 。然而该电池还处于研发的初级阶段,受限于ORR和OER电化学反应动力学缓慢,电池的实际容量、倍率性能、能量效率和循环寿命距产业化应用还有很大差距。因而开发高效稳定的催化剂,是提高电池反应动力和循环效率的迫切需要。原子级纳米晶具有最大化的原子利用效率和独特的结构特点,往往表现出不同于传统纳米催化剂的活性、选择性和稳定性,为调控电化学反应过程提供了多种可能。在锂氧电池中,电解液中可溶性LiO2中间体能够调控放电产物Li2O2的形成与分解路线。先前的研究结果表明[1],不同的生成路线与LiO2在催化剂的不同晶面上的吸附能有关。 因此,探究单原子催化剂的尺寸效应对LiO2吸附能的影响,可能是一种调整低供体数电解质中过氧化锂形成与分解路径的新思路。这一新发现将为高能量效率和长循环寿命的锂氧电池的设计提供更多的选择。

单原子催化剂(SACs)是一类非常重要的电催化剂,其独特的单分散结构集均相催化和多相催化剂的优点于一身,拥有最大的金属利用率、优异的催化活性和稳定性。同时,SACs的活性位点相对简单确定且易于调控,因而这种独特的结构和性能使得单原子催化剂成为了一个非常理想的催化机理研究和性能优化的材料平台。然而当单原子催化剂与锂空气电池相遇,会擦出怎样的火花呢?本文采用原位聚合技术,设计合成了Co单原子嵌入的氮掺杂碳空心球(N-HP-Co)用于锂氧气电池的研究,并对其充放电过程进行详细分析。其结果表明,受益于N-HP-Co最大化暴露的CoN4单原子活性位点及活性位点在碳球壳上的均匀分布,降低了对LiO2的吸附能力,有效的改变了电池的反应路径,使得电池反应动力学得到极大提高,大幅提升了电池性能。

▲图一 单原子催化剂的合成过程。

单原子催化剂由于活性位点均匀性的提高以及配位环境的高度可控性,在许多催化反应中都表现出较高的催化活性。因此将单原子Co催化剂应用于锂氧气电池中,来探究对Li2O2形成与分解反应路径的影响。我们采用原位聚合的方法,以二氧化硅作为模板,盐酸多巴胺作为碳源,并在900 °C的氮气氛围内热解。

▲图二 单原子催化剂的特性表征。a, b) 样品的SEM图像(a:1微米;b:200纳米);c) 样品的TEM图像(主图:200纳米;插图:10纳米);d) 样品的EDX元素分析(50纳米);e, f) 样品的HAADF-STEM图像(e:50纳米;f:2纳米);g) 样品及对比材料的XRD图像;h) 样品的N 1s XPS光谱;i) 样品及对比材料的氮气吸附曲线。

▲图三 单原子催化剂的原子结构分析。a) 样品的XANES光谱;b) 样品的傅里叶转换的Co-K边光谱;c, d)样品在k和R空间的EXAFS拟合曲线。

N掺杂的碳球壳作为载体是锚定Co单原子的关键步骤。高角度环形暗场球差电镜(HAADF)、能量色散谱(EDX)元素映像图表和X射线吸收光谱(XAS)测试等关键性表征技术证实了单原子Co的成功制备和CoN4高活性位点的存在。

▲图四 单原子催化剂的放电机理研究。a) 样品及对比材料的放电曲线;b) 样品及对比材料的CV曲线;c) 样品及对比材料的倍率性能;d, e, f) 样品及对比材料的放电产物的SEM图像及相应的XRD谱图(500纳米);h, i) 样品及对比材料的放电机理图。

受益于N-HP-Co SACs最大化暴露的CoN4单原子活性位点在碳球壳上的均匀分布,电极氧化还原反应动力学得到极大提升,加快了放电产物Li2O2的形成速率,大幅提升了电池的放电容量和倍率性能。与同等含量的贵金属催化剂相比,在相同的电流密度和容量下,N-HP-Co SACs具有更多的反应活性位点,因而更有利于生成纳米片状的Li2O2,并通过“外延生长方式”进一步组装形成有利的纳米花状Li2O2。这种特殊的放电机制有利于打破电荷传输限制和放电产物电化学绝缘的本质。

▲图五 单原子催化剂的充电特性。a) 样品及对比材料在不同充电阶段的紫外可见光谱图;b) 样品的充电机理图;c-h) 样品及对比材料上的不同结构对LiO2的吸附能。

为了更全面地了解CoN4单位点催化剂的充电机理,通过密度泛函理论(DFT)计算表明复杂的配位环境可以显著改变中心金属原子CoN4对LiO2*的吸附能力,从而调控反应的活性和选择性。可以看出,CoN4活性中心对放电中间体LiO2弱的吸附能,有利于提高LiO2在电解质中的溶解度,诱导充电反应过程由两电子路径向单电子路径转变。因而有利于提高电池的充电效率。

▲图六 锂空气电池的循环稳定性。a) 样品及对比材料的循环性能;b-e) 样品及对比材料在不同循环过程中放电产物的SEM图像(b, d:1微米;c, e:500纳米);f, g) 样品及对比材料在不同循环过程中的放电产物的XPS光谱。

单原子催化的锂空气电池可以有效的抑制副反应的发生,并展现出优异的循环稳定性,充分验证了催化剂对放电产物的精准调控对稳定电池体系的重要作用。

▲图七 单原子催化剂在循环过程中的稳定性。a) 样品在全圈循环后的XPS光谱;b) 样品在多圈循环后的EDX光谱(200纳米);c) 样品在多圈循环后的XANES光谱;d) 样品在多圈循环后的傅里叶转换的Co-K边光谱。

N-HP-Co 在50次的循环过程中,Co的单原子结构依然被保留。Co单原子在碳载体上的固有稳定性使它们在电化学反应中具有优异的耐久性,这一显著的优势与低成本的优势相结合,为金属单原子催化剂在锂氧电池反应路线的可调性提供了新的策略。

单原子催化剂的合成受到草莓生长过程的启发,采用二氧化硅为模板,原位聚合生成氮掺杂的Co单原子催化剂。由于单原子催化的本质特征,低配位环境和单原子与碳球壳之间的协同作用能够精准的调控锂氧气电池中放电产物的生成与分解路线。与同等含量的贵金属催化剂相比,单原子催化剂不仅能够调控放电产物的形貌,同时增加了放电容量,避免了过多的副反应的发生,极大地提高了电池的电催化性能。该研究提出的单原子催化正极的概念、设计、制备及催化机制,将为锂空气电池领域新型催化剂的发展提供新的研究思路和科学依据,具有鲜明的引领性和开创性特征。

参考文献

[1] Yao, W. T. et al. Tuning Li2O2 formation routes by facet engineering of MnO2 cathode catalysts. J. Am. Chem. Soc.,2019,141,12832-12838.

徐吉静,1981年7月出生于山东省单县,现任吉林大学,化学学院,无机合成与制备化学国家重点实验室,未来科学国际合作联合实验室,教授,博士生导师。光学晶体标准化技术委员会副秘书长。主要从事多孔新能源材料与器件领域的基础研究和技术开发工作,研究方向包括锂(钠、钾、锌)离子电池关键材料及器件,锂空气(硫、二氧化碳)电池等新型化学电源,外场(光、力、磁、热)辅助能量储存与转化新体系。近5年共发表SCI学术论文50余篇,其中包括第一作者/通讯作者论文:Nat.Commun.3篇、Nat.Energy 1篇、Angew.Chem.Int.Ed. 2篇、Adv.Mater.3篇、Energy Environ.Sci.1篇、ACS Nano 1篇、ACS Cent.Sci.1篇。迄今为止,论文被他引4000余次,单篇最高引用360次,12篇论文入选ESI高引论文,研究成果被Nature、Science等作为亮点报道。获授权发明专利和国防专利10项。曾获科睿唯安“全球高被引学者”(2019年)、吉林省拔尖创新人才(2019年)、吉林省青年 科技 奖(2018年)和吉林大学学术带头人(2018年)等奖项或荣誉。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/158676.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-03-23
下一篇2023-03-23

发表评论

登录后才能评论

评论列表(0条)

    保存