在做SEM前要对式样表面做那些处理

在做SEM前要对式样表面做那些处理,第1张

SEM就是观察表面形貌的一种方法。

对于块状材料,如果观察断口形貌,则要把样品打断,将断口在丙酮中超声处理,去除碎渣,再喷碳或金。

对于抛光样品,需要将抛光面腐蚀。腐蚀剂根据不同材料选择。

SEM搜索引擎营销由于其精准性及低广告成本优势,成为国内及国际客户重要的网络营销方式。下面的文章中,我大致讲解了,我们应该以什么样的步骤去做搜索营销:[如果您还知道SEM是什么,请访问我的博文,SEM是什么]? ]

第一步:了解产品/服务针对哪些用户群体

第二步:了解目标群体的搜索习惯 [目标群体习惯使用什么关键词搜索目标产品?]

第三步: 目标群体经常会访问哪些类型的网站

[b]

第四步:分析目标用户最关注产品的哪些特性 [影响用户购买的主要特性,例如品牌、价格、性能、可扩展性、服务优势等等]

[b]第五步:竞价广告账户及广告组规划 [创建谷歌及百度的广告系列及广告组;需要考虑了管理的便捷,及广告文案与广告组下关键词相关性]

第六步:相关关键词的选择[我们可以借助谷歌关键词分析工具,及百度竞价后台的关键词分析工具,这些工具都是根据用户搜索数据为基础的,具有很高的参考价值]

[b]第七步:撰写有吸引力的广告文案

在广告文字中包括关键字,使相关性更高,并能抓住客户的眼球

突出产品/服务的竞争优势

在广告文字中包括号召性语言,让客户了解点击到您网站之后的下一步(例如:购买、定购、下定单、注册、闻讯、致电、了解更多)

第八步:内容网络投放 [如果您的预算有限,暂时不考虑投放内容广告,直接跳过这一步]

第九步:目标广告页面的设计[LANDING PAGE设计,关于LANDING PAGE设计技巧,大家可参考博文:8个技巧让设计转换为成功的销售 ]

包含重要的到下一步动作的引导,例如如何购买,了解更多

涵盖主要内容的引导链接

更好的用户体验(设计更友好的导航,例如设计不同类型用户的访问入口,进入之后显示适合这些用户的产品和服务)

第十步:基于KPI广告效果转换评估 (首先我们要实施基于用户行为分析的网站分析,例如谷歌分析、雅虎统计、omniture SiteCatalys ,如何您还不知道如何定义网站KPI,请访问我的博文,网站分析实践-KPI度量的定义)

只需要十个步骤,我们就能清楚了解到针对自己的产品及服务,我们应该怎么去做SEM搜索营销.不过这个方法只适合中小企业的广告主,对于大型广告客户需要分析更深层的用户行为,及广告点击流的数据分析。 好了,十个步骤已经说完了?听说耐特康赛SEM做的不错还得到了百度的认证.

聚焦离子束扫描电镜双束系统(FIB-SEM)是在SEM的基础上增加了聚焦离子束镜筒的双束系统,同时具备微纳加工和成像的功能,广泛应用于科学研究和半导体芯片研发等多个领域。本文记录一下FIB-SEM在材料研究中的应用。

以目前实验室配有的FIB-SEM的型号是蔡司的Crossbeam 540为例进行如下分析,离子束最高成像分辨率为3nm,电子束最高分辨率为0.9nm。该系统的主要部件及功能如下:

1.离子束: 溅射(切割、抛光、刻蚀);刻蚀最小线宽10nm,切片最薄3nm。 

2.电子束 : 成像和实时观察

3.GIS(气体注入系统): 沉积和辅助刻蚀;五种气体:Pt、W、SiO2、Au、XeF2(增强刻蚀SiO2)

4.纳米机械手:  转移样品 

5.EDS: 成分定量和分布

6.EBSD : 微区晶向及晶粒分布

7.Loadlock(样品预抽室): 快速进样,进样时间只需~1min

由上述FIB-SEM的一个部件或多个部件联合使用,可以实现在材料研究中的多种应用,具体应用实例如下:

图2a和b分别是梳子形状的CdS微米线的光学显微镜和扫描电镜照片,从光学显微镜照片可以看出在CdS微米线节点处内部含有其他物质,但无法确定是什么材料和内部形貌。利用FIB-SEM在节点处定点切割截面,然后对截面成像和做EDS mapping,如图2c、d、e和f所示,可以很直观的得到在CdS微米线的节点处内部含有Sn球。

FIB-SEM制备TEM样品的常规步骤如图3所示,主要有以下几步:

1)在样品感兴趣位置沉积pt保护层

2)在感兴趣区域的两侧挖大坑,得到只有约1微米厚的薄片

3)对薄片进行U-cut,将薄片底部和一侧完全切断

4)缓慢移下纳米机械手,轻轻接触薄片悬空的一端后,沉积pt将薄片和纳米机械手焊接牢固,然后切断薄片另一侧,缓慢升起纳米机械手即可提出薄片

5)移动样品台和纳米机械手,使薄片与铜网(放置TEM样品用)轻轻接触,然后沉积pt将薄片和铜网焊接牢固,将薄片和纳米机械手连接的一端切断,移开纳米机械手,转移完成

6)最后一步为减薄和清洗,先用大加速电压离子束将薄片减薄至150nm左右,再利用低电压离子束将其减薄至最终厚度(普通TEM样品<100nm,高分辨TEM样品50nm左右,球差TEM样品<50nm)

一种如图4a所示的MoS2场效应管,需要确定实际器件中MoS2的层数及栅极(Ag纳米线)和MoS2之间的距离。利用FIB-SEM可以准确的在MoS2场效应管的沟道位置,垂直于Ag纳米线方向,提出一个薄片,并对其进行减薄,制备成截面透射样。在TEM下即可得到MoS2的层数为14层(图4c), Ag纳米线和MoS2之间的距离为30nm(图4b)。

图5是一种锰酸锂材料的STEM像,该样品是由FIB-SEM制备,图中可以看到清晰的原子像。这表明FIB-SEM制备的该球差透射样非常薄并且有很少的损伤层。

FIB-SEM还可以进行微纳图形的加工。

图6a 是FIB-SEM在Au/SiO2上制备的光栅,光栅周期为150nm,光栅开口为75nm。

图6b 是利用FIB-SEM在Mo/石英上做的切仑科夫辐射源针尖,针尖曲率半径为17nm。

图6c 是在Au膜上加工的三维对称结构蜘蛛网。

图6d 是FIB-SEM在硅上刻蚀的贺新年图案,图中最小细节尺寸仅有25nm。

FIB-SEM可以对材料进行切片式的形貌和成分三维重构,揭示材料的内部三维结构。大概过程如图7a所示, FIB切掉一定厚度的样品,SEM拍一张照片,重复此过程,连续拍上百张照片,然后将上百张切片照片重构出三维形貌。图7b是一种多孔材料内部3×5×2um范围的三维重构结果,其实验数据是利用FIB-SEM采集,三维重构是利用Avizo软件得到,其分辩率可达纳米级,展示了内部孔隙的三维空间分布,并可以计算出孔隙的半径大小、体积及曲率等参数。

利用FIB-SEM配有的纳米机械手及配合使用离子束沉积Pt,可以实现微米材料的转移,即把某种材料从一个位置(衬底)转移到特定位置(衬底),并固定牢固。图8是把四针氧化锌微米线从硅片转移到两电极的沟道之间,从而制备成两个微米线间距只有1um的特殊器件。

最后,FIB-SEM还有很多其他的应用,例如三维原子探针样品制备,芯片线路修改等。总之FIB-SEM是材料研究中一个非常重要的手段。

不积珪步,无以至千里;不积细流,无以成江海。做好每一份工作,都需要坚持不懈的学习。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/165287.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-03-24
下一篇2023-03-24

发表评论

登录后才能评论

评论列表(0条)

    保存