高岭土-有机插层复合物的表征

高岭土-有机插层复合物的表征,第1张

高岭土有机插层复合物表征包括插层效果、复合物的成分及结构、复合物的谱学特征、复合物的物化性质等多方面的内容,详细精确的表征是探讨反应机理和查明复合物的性质及确定用途的基础研究工作。

一、插层效果

插层效果可用层间距、插层率两个参数来表征。层间距的变化说明有机分子是否插入高岭土层间,插层率则表征插层反应进行的程度。

高岭石的层间距(basal spacing)为0.716nm,其层间域(interlayer spacing)为0.292nm[32]。有机分子插入高岭石层间域后,引起层间域膨胀,其层间域也相应增大,XRD的d001值可以直接反映出这种变化。插层后,高岭石的0.716nm衍射峰强度变弱,而代之以出现新的衍射峰。因此,层间距的变化是评价插层是否进行的最直接手段,但不能反映插层作用进行的程度。

插层率(intercalation ratio)可用来评价插层反应程度,用高岭石插层前后的d001值强度变化比值(RI)来表示:

RI=Ic/(Ic+Ik)

公式中Ic表示插层后复合物中新出现的膨胀高岭石d001值衍射峰强度,Ik表示插层后残余的未膨胀的高岭石的d001值衍射峰强度。

插层后,膨胀高岭石越多,相应的残余未膨胀的高岭石则越少,0.716nm的衍射峰强度则减弱得越多。用插层率可以反映复合物中膨胀高岭石所占份额,即反映了插层反应进行的程度。

二、谱学特征

红外光谱(IR)、拉曼光谱(Raman)和魔角旋转核磁共振谱(MAS NMR)分析是表征高岭石-有机插层复合物常用的研究方法。应用红外光谱和拉曼光谱技术可以表征高岭石表面羟基团的振动谱带及在插层前后的变化。核磁共振技术研究插层过程的化学位移,能反应原子所处的化学环境和直接表征键的强度以及插层有机分子定向[33~40]。根据谱学特征可推断有机分子在高岭石层间的排列方式。因此,谱学技术可有效地表征插层机理和层间分子的定向性。

高岭石在IR和Raman光谱上,有5个振动带:v1(3699cm-1)、v2(3665cm-1)、v3(3642cm-1)、v4(3682cm-1)、v5(3620cm-1)。其中v4为只具有Raman活性而IR为非活性。v5带为内羟基的伸缩振动,强度最大。其他4带为内表面羟基的伸缩振动。其中,v1、v4为不同对称性氢键的同相(in-phase)伸缩振动,v2、v3为与v1、v4相对应的异相(out-of-phase)伸缩振动。插层作用对内羟基v5带影响小,对内表面羟基影响大,使v1、v2、v3、v4的强度减弱,峰的分布面积减小。插层作用导致高岭石部分谱带消失和新的谱带形成,插层前后谱带特征变化越大,插层效果越好。v1+v4值的变化具有代表性,插层前后强度值(面积)的变化可用来衡量插层程度[41]。

核磁共振技术有1H、2H、13C、29Si、27AlNMR等分析,用于研究这些原子所处的化学环境及插层前后的变化,从而推断有机分子在高岭石层间的键合强度及定向排列方式。王林江[42]等用1H核磁共振技术(1HNMR)研究高岭石-甲酰胺插层机理,区分出高岭石结构中内表面羟基和内羟基质子的吸收峰,表征了插层作用对质子化学位移的影响和高岭石的结构变化。

三、吸附、插层与接枝

如何区分高岭石层间插入和表面吸附的插层剂分子是表征技术中的一个难点。表面吸附和层间插入的插层剂分子由于和高岭石结合程度及所处环境不同,表现出不同的物化性质。通过缓慢加热使两者在不同的时间释放出来,即准等温分析是一种较为有效的方法。

接枝作用是一种特殊的插层取代作用,是插层主体和客体分子形成共价键的过程,一般在高温或高压下,通过Al—OH基与烃基形成共价键(Al—O—C)。接枝复合物与插层复合物的区别对同一插层剂来说,直接表现在层间距的不同,接枝产物的层间距比取代反应形成的插层复合物小,但接枝产物的结合键强,稳定性好。用直接插层剂对高岭石进行预处理使层间膨胀,能促进接枝作用发生。甲醇插层高岭石后,其插层复合物仅能存在于甲醇溶液保护的环境中,当风干后,层间距由1.08nm缩小到0.82nm或0.86nm,JamesJ.Tunney等[43]通过XRD、FTIR、TG以及13CNMR分析认为是发生了共价键的接枝反应,其产物(Kao-OMe)示意图见图2-1。

图2-1 接枝产物Kao-OMe8.2nm结构示意图

(据Tunney等[43])

四、化学组成分析

有机化合物CHN含量分析,结合热失重分析,可以大致确定吸附的有机物含量和插层的有机物含量。根据插层有机物的含量可以计算出插层复合物的化学分子式。计算结果可以佐证由XRD和谱学特征推断的分子排列方式以及理论化学分子式。

五、插层复合物的性质

高岭石有机插层后形成的复合物有许多不同于高岭石或有机分子的物化性质,包括形貌特征、比表面积、稳定性、反应活性等。这些特殊性质使得插层复合物在很多领域得到应用或有潜在的应用价值。

1)形貌特征。扫描电镜(SEM)和透射电镜(TEM)是表征插层后高岭土形态的有效方式。高岭石在插层前后形貌有较大的变化,目前有关这方面的照片资料很少,一般情况下,高岭石的晶片棱角明显,层片纹理清晰。经插层后,由于有机物常吸附包裹在高岭石的表面,使得高岭石片层纹理模糊,棱角钝化。

2)比表面积。比表面积常用BET法测定。有机分子的插层使高岭石层间距增大,比表面积增加。复合物的比表面积在一定程度上反应高岭石晶层膨胀程度,比表面积大,插层效果好。

3)稳定性。高岭土-有机插层复合物的稳定性包括在空气中的稳定性、抵抗水淋滤作用的能力和抗热分解能力三方面。将处理后的复合体,用XRD测定层间距的变化来评价复合物的稳定性。不稳定的复合物经处理后层间距恢复到高岭石的0.716nm。还可用热重-差热分析(TG-DTA)和差示扫描量热(DSC)分析评价复合物的热稳定性。插层复合物中,目前只有Kao-DMSO、Kao-KAc比较稳定,可稳定存在很长时间,Kao-DMSO在常温下能存在长达几年的时间[44]。而肼、甲醇插层复合物只能存在于溶液保护条件下,室温下风干就会发生脱嵌。

Rnman和IR光谱也能反映插层复合物的稳定性,羟基伸缩振动带插层后向低频方向漂移,其漂移距离与形成的氢键强度呈正相关,漂移距离越大,形成的复合物越稳定。同理,羟基变形振动带向高频漂移,漂移越多,高岭土有机复合物的稳定性越好。

4)其他性质。高岭石有机插层之后,具有许多特殊性能。高岭石用α-巯基苯并噻唑插层制备的复合物(Kao-MBT),对Pb2+的吸附能力由高岭石的1.30μmol·g-1提高到4.17μmol·g-1,可应用于环境保护[45]。高岭土-对硝基苯胺表现出二次非线性光学特征,能在光学材料方面得到应用。

高岭石是插层材料的重要主体相,高岭石层的刚性特征使其在插层反应过程中能基本保持不变形,有利于层间有机分子的自组装和分子识别,有机分子在高岭石层间限制性环境中有序排列并具有各向异性。高岭石层与有机分子之间以分子水平相互作用,使复合物具有独特的物理、化学和机械性能。高岭土-有机插层复合物在催化剂、吸附剂、先进陶瓷材料等方面具有广阔的应用前景。插层反应也为纳米材料的研究和制备提供了新的途径。

高岭土-有机插层复合物的发展大体上可划分为3个阶段:1961~1987年为强极性有机小分子插层复合物制备阶段;1988~1997年为多种有机分子制备与表征阶段;1998年至今为应用研究与理论发展阶段。

第一阶段开始于1961年,和田光史把高岭土样品在浓醋酸钾溶液中浸泡或与醋酸钾一起研磨,复合物层间距膨胀到14Å。同年,威斯发现了尿素对高岭石群也起着相同的作用,并且查明高岭石与氨基甲醛、肼之间也有相同作用[9]。1968年,Olejnik[10]制备出了高岭土-二甲基亚砜(Kao-DMSO)插层复合物。初期阶段,研究这些插层物的目的是为了区分高岭石与其他粘土矿物种类。这一阶段,研究进展缓慢,制备的高岭土有机插层复合物的种类较少,表征手段一般为X射线衍射,到1987年,已制备出Kao-Urea、Kao-DMSO、高岭土-甲酰胺(Kao-FA)、高岭土-乙酸钾(Kao-KAc)、高岭土-肼(Kao-HY),埃洛石-甲酰胺(Hal-FA)、埃洛石-乙酸钾(Hal-KAc)、埃洛石-肼(Hal-HY)、高岭土-氧化吡啶(Kao-PNO)等插层复合物[11~12]。该阶段以强极性有机小分子插入高岭土层间形成复合物为特征,偶尔以极性小分子作挟带剂制备出如Kao-PNO等复合物。

第二阶段以Sugahara等[13]于1988年首次报道制备出高岭土-聚合物插层体高岭土-聚丙烯腈(Kao-PAN)为标志,使插层聚合制备高岭土-聚合物纳米复合材料成为现实。从此,许多学者开始注意并研究高岭土-有机插层复合物。此阶段主要以制备和表征为特征,表征方法有X射线衍射(XRD)、红外光谱(IR)、拉曼光谱(Raman)、魔角旋转核磁共振谱(MAS NMR)、热分析(TA)、比表面积测定(BET)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)以及有机物含量CHN分析等。该阶段制备出许多新的插层复合物,如高岭土-脂肪酸盐(Kao-FatA)[14]、高岭土-聚丙烯酰胺(Kao-PAM)[15]、高岭土-乙二醇(Kao-EG)[16]、高岭土-聚乙二醇(Kao-PEG)[17]等复合物。Frost及他的合作者对高岭土-插层复合物进行了大量研究,特别是用拉曼光谱对插层复合物进行表征并研究有机分子在高岭土层间的排列形式[18~20]。

第三阶段以1998年Komori等[21]确认高岭土-甲醇(Kao-MeOH)为一种通用的预插层体为划分标志。Kao-MeOH的通用性促进了大量新的插层复合物的合成。能直接插层于高岭土层间的有机物仅有极少数强极性有机小分子,其他有机分子的插层是用所谓“置换插层”的方法,即先用强极性有机小分子插层,然后再用其他有机分子置换插在高岭土层间的强极性有机小分子,从而达到插层目的。常用的预插层体,或称为前驱物(体)的有Kao-NMF、Kao-DMSO、高岭土-乙酸铵(Kao-AmAc)等,用这些预插层体可以制备出高岭土-聚丙烯酰胺(Kao-PAAm)[22]、高岭土/1-甲基-2-吡硌烷酮(Kao-NMP)[23]、高岭土/聚丙氨酸(Kao-β-Alanine)[24]等。但是,仍然有许多有机物用上述这些预插层体不能进行置换,而用Kao-ME却能够制备出相应的插层复合物,如高岭土-聚乙烯基吡硌烷酮(Kao-PVP)[25]、高岭土-烷基胺(Kao-CnN)[26]、高岭土-硝基苯胺(Kao-NA)[27]、高岭土-尼龙6(Kao-Nylon6)[28]等。Kao-MeOH的通用性还表现在可作为纳米反应器用于制备纳米金属/高岭土复合物,如纳米Pd/高岭土复合物[29]、纳米Ag/高岭土复合物[30]。该阶段以制备出大量新的高岭土有机插层复合物为基本特征外,理论研究和应用开发也是其显著特点。复合物的反应机理、结构特征及特殊性能研究等均有了较大的进展,分别探讨了插层复合物的结构及稳定性、水在插层中的作用、插层反应的影响因素等。插层及插层-脱嵌技术用于高岭土的表面修饰改性、高岭土剥片、大幅度提高高岭土的比表面积以及反应活性等应用性研究,为今后实现工业化生产建立了理论基础。

高岭土有机插层复合物的研究历史较短,但发展很快。虽然大量的制备与研究开始于第三阶段,仅有不到十年的短暂历程;但到目前为止,已制备出多种插层纳米复合物,其特殊的性能引起许多化学家、材料学家的兴趣,在不久的将来理论和应用研究方面必将有新的发展和突破。

[蒙脱石]mo ntm orilonite 又称 “微晶高岭石”或“胶岭石”。成分( Na-Ca)0.33 (Al,Mg)2 (Si4O1) (OH)2 ●nH2O,水的含量变化很大。单斜晶系。通常呈土状块体。白色,有时带浅红、浅绿色。光泽暗淡。硬度1。比重约为2。吸水性很强。吸水后其体积能膨胀增大几倍到十几倍,具有很强的吸附力和阳离子交换性能。是膨润,土和漂白土的主要组成成分。主要是火山凝灰岩经风化作用的产物。用于石油、纺织、橡胶、陶瓷等工业。

[高岭石]kaolinite因首先发现于我国江西省景德镇的高岭而得名。与地开石、珍珠陶土同为Al4 (Si401) (OH)。 的多型变体。单斜或三斜晶系。晶体在电子显微镜下可见呈细小的假六方片状,通常呈土状块体产出。纯净者白色,常因含有各种杂质而染有不同颜色,含有机质者呈黑色。光泽暗淡。硬度近于1。断口平坦状。比重2.6左右。干燥时粘舌,以手易捏成粉末,潮湿时具可塑性。主要是外生成因的,是正长石、云母等铝硅酸盐矿物的风化产物。此外,还有热液交代成因,为某些低温热液矿床的围岩蚀变的产物。是陶瓷和电瓷工业中的重要材料,在造纸、橡胶、油漆等工业中做填充料。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/169636.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-03-25
下一篇2023-03-25

发表评论

登录后才能评论

评论列表(0条)

    保存