2020.02.03小刘科研笔记之材料的表征方法

2020.02.03小刘科研笔记之材料的表征方法,第1张

形貌、成分和结构的表征材料的生长、鉴别、加工、研究和应用等过程中很重要的一个步骤。材料的表征方法按照实验数据类型可以分为图像类和谱图类两类,其中图像类有SEM、FIB-SEM、AFM和TEM等;谱图类有XPS、XRD、Raman、FT-IR、UV-vis、NMR、XAS以及配合电镜使用的EELS和EDS等。

SEM、FIB-SEM和AFM主要用来表征材料的形貌特征,TEM、EELS、EDS 、XPS、XRD、Raman、FT-IR、UV-vis、NMR和XAS主要用来表征材料的晶体结构、成分和化学键信息。

1.SEM

SEM是最广泛使用的材料表征方法之一。它具备较大的景深、较宽的放大范围和纳米级甚至亚纳米级高分辨率的成像能力,可以对复杂的、粗糙的表面形貌进行成像和尺寸测量,配合背散射电子探头可以分析一些材料的成分分布。另外,结合截面样品的制备,SEM还可以对样品的截面形貌进行表征和尺寸测量。图1是将硅衬底上生长的SiNX层刻蚀为周期性光栅结构,由其截面SEM图可以测量出,光栅开口为302.3nm,刻蚀深度为414.7nm,陡直度为90.7°,光刻胶残余为49.0nm。

2.FIB-SEM

FIB-SEM是在SEM的基础上增加了聚焦离子束镜筒的双束系统,同时具备微纳加工和成像的功能,在材料的表征分析中具有重要的作用。首先,FIB-SEM可以准确定点制备材料的截面样品,并对其进行形貌表征和尺寸测量,广泛应用于芯片失效分析和材料研究;另外FIB-SEM可以对材料进行切片式的形貌和成分三维重构,揭示材料的内部三维结构。图2是页岩内部5×8×7微米范围的三维重构结果,其分辩率可达纳米级,展示了页岩中孔隙、有机质、黄铁矿等的三维空间分布,并可以计算出孔隙的半径大小、体积及比例。FIB-SEM还有很多其他的强大功能,例如复杂微纳结构加工、TEM制样、三维原子探针制样和芯片线路修改等。

3.AFM

AFM是另一种用来表征材料形貌的常用技术。和SEM相比,AFM的优势是可以对空气和液体中的材料进行成像,另外它测量材料表面粗糙度和二维材料及准二维材料厚度的精度非常高。图3是在石墨炔的边缘得到的AFM图,可以得出石墨炔的厚度约为2.23nm,大约是6层石墨炔原子层。

4.TEM透射电镜

TEM以及它的附件(电子衍射、EDS、EELS、各种样品杆)是用来表征材料的形貌、晶格结构和成分最有效的方法之一。比较经常用到的基于TEM的技术有以下几种。

4.1 LMTEM

LMTEM(低倍TEM)可以用来观察材料的整体形貌和尺寸,辨别材料的不同形态。与扫描电镜相比,LMTEM分辨率更高一些,制样复杂一些,是三维结构的二维投影。图4a和b分别是石墨炔纳米线和薄膜的LMTEM图,可以很明显的揭示出石墨炔的不同形态。LMTEM图也可以分别展示出石墨炔纳米线和薄膜的直径和面积等尺寸信息。

4.2 SAED

SAED(选区电子衍射)经常用来表征材料的晶体结构、结晶性,以及辅助样品杆转正带轴,得到高质量HRTEM像。图5是一个利用SAED判断ZnO/Ga2O3异质结微米线优先生长晶向的例子。首先沿如图5a插图所示微米线的长轴方向提取薄片制成TEM样品(图5a),然后在ZnO处做选区电子衍射(图5b),并标定出沿微米线长轴方向的衍射斑间距,算出其对应的晶面间距为0.26nm;最后与ZnO的标准PDF卡片对比,得出微米线优先生长的晶向为[001],即c轴。

4.3 HRTEM

HRTEM是一种比SAED更快、更直观的表征材料晶面间距和结晶程度的技术。图6a是GDY(石墨炔)/CuO复合物的HRTEM像。从图中测量出的0.365nm和0.252nm分别与GDY层间距和CuO的(-111)晶面间距的理论值一致,从而确定该复合物是GDY和CuO的复合物。另外,从GDY和CuO界面处的HRTEM可以很直观的看出GDY和CuO之间有很好的结合。

4.4 EDS

EDS做为TEM和SEM的附件,可以用来分析材料的成分的组成和分布。而对于TEM,需要在其STEM成像模式下,才可以进行EDS mapping,揭示材料的成分分布。GDY/CuO复合物的STEM像和对应的EDS 元素mapping如图7所示。EDS mapping图表明该材料由C、Cu、O三种元素组成,还可以直观的看出复合物中的CuO被GDY成功的包裹在里面。

4.5 EELS

EELS(电子能量损失谱)是另一种类似于EDS的用于分析材料的成分组成和分布的技术。EELS和EDS之间的区别有:EELS和EDS分别更适用于轻和重元素;EELS还可以分析材料中元素的成键态;

另外,EELS还可以用来测量材料的厚度,其简单原理是收集记录样品的具有zero-loss peak的EELS谱,然后将zero-loss peak的面积积分I0与整个光谱的面积积分It比较,即可得出样品的厚度t=ln(It/I0)* λ,其中λ是所有非弹性散射电子的总平均自由程{参考文献6}。

参考文献

[1] 马勇,钟宁宁*,黄小艳,郭州平,姚立鹏.聚集离子束扫描电镜( FIB-SEM) 在页岩纳米级孔隙结构研究中的应用[J]. 电子显微学报,2014,33(3) : 251-256.

[2] Chao Li, Xiuli Lu, Yingying Han, Shangfeng Tang, Yi Ding, Ruirui Liu, Haihong Bao, Yuliang Li, Jun Luo*, Tongbu Lu*. Direct Imaging and Determination of The Crystal Structure of Six-layered Graphdiyne. Nano Res. 2018, 11, 1714−1721.

[3] Haihong Bao, Lei Wang, Chao Li*, and Jun Luo*. Structural Characterization and Identification of Graphdiyne and Graphdiyne-Based Materials. ACS Appl. Mater. Interfaces. DOI: 10.1021/acsami.8b05051

[4] M. Chen, B. Zhao, G. Hu, X. Fang,* H. Wang,* L. Wang, J. Luo, X. Han, X. Wang, C. Pan,* and Z. L. Wang*,Piezo-Phototronic Effect Modulated Deep UV Photodetector Based on ZnO-Ga2O3 Heterojuction Microwire,  Adv. Funct. Mater. 2018, 28, 1706379.

[5] Gao, X.Ren, H. Y.Zhou, J. Y.Du, R.Yin, C.Liu, R.Peng, H. L.Tong, L. M.Liu, Z. F.Zhang, J. Synthesis of Hierarchical Graphdiyne-Based Architecture for Efficient Solar Steam Generation. Chem. Mater. 2017, 29, 5777−5781.

[6] Egerton, R. F. Electron Energy-Loss Spectroscopy in the Electron MicroscopeSpringer: New York, 1995.

在锂离子电池发展的过程当中,我们希望获得大量有用的信息来帮助我们对材料和器件进行数据分析,以得知其各方面的性能。目前,锂离子电池材料和器件常用到的研究方法主要有表征方法和电化学测量,下面跟铄思百小编一起来看看锂电材料的检测方法吧!

电化学测试主要分为三个部分:

(1)充放电测试,主要看电池充放电性能和倍率等;

(2)循环伏安,主要是看电池的充放电可逆性,峰电流,起峰位;

(3)EIS交流阻抗,看电池的电阻和极化等。

下面就锂电综合研究中用到的表征手段进行简单的介绍,大概分为八部分来讲:成分表征、形貌表征、晶体结构表征、物质官能团的表征、材料离子运输的观察、材料的微观力学性质、材料表面功函数和其他实验技术。

1、成分表征

(1)电感耦合等离子体(ICP)

用来分析物质的组成元素及各种元素的含量。ICP-AES可以很好地满足实验室主、次、痕量元素常规分析的需要;ICP-MS相比ICP-AES是近些年新发展的技术,仪器价格更贵,检出限更低,主要用于痕量/超痕量分析。

Aurbac等在研究正极材料与电解液的界面问题时,用ICP研究LiC0O2和LiFePO4在电解液中的溶解性。通过改变温度、电解液的锂盐种类等参数,用ICP测量改变参数时电解液中的Co和Fe含量的变化,从而找到减小正极材料在电解液中溶解的关键[1]。值得注意的是,若元素含量较高(例如高于20%),使用ICP检测时误差会大,此时应采用其他方式。

(2)二次离子质谱(SIMS)

通过发射热电子电离氩气或氧气等离子体轰击样品的表面,探测样品表面溢出的荷电离子或离子团来表征样品成分。可以对同位素分布进行成像,表征样品成分;探测样品成分的纵向分布

Ota等用TOF—SIMS技术研究了亚硫酸乙烯酯作为添加剂加到标准电解液后,石墨负极和LiC0O2正极表面形成SEI膜的成分[2]。Castle等通过SIMS探测V2O5在嵌锂后电极表面到内部Li+的分布来研究Li+在V2O5中的扩散过程[3]。

(3)X射线光子能谱(XPS)

由瑞典Uppsala大学物理研究所Kai Siegbahn教授及其小组在20 世纪五六十年代逐步发展完善。X射线光电子能谱不仅能测定表面的组成元素,而且还能给出各元素的化学状态信息,能量分辨率高,具有一定的空间分辨率(目前为微米尺度)、时间分辨率(分钟级)。

用于测定表面的组成元素、给出各元素的化学状态信息。

胡勇胜等用XPS研究了在高电压下VEC在石墨表面生成的SEI的成分,主要还是以C、O、Li为主,联合FTIR发现其中主要成分为烷氧基锂盐[4]。

(4)电子能量损失谱(EELS)

利用入射电子引起材料表面电子激发、电离等非弹性散射损失的能量,通过分析能量损失的位置可以得到元素的成分。EELS相比EDX对轻元素有更好的分辨效果,能量分辨率高出1~2个量级,空间分辨能力由于伴随着透射电镜技术,也可以达到10−10 m的量级,同时可以用于测试薄膜厚度,有一定时间分辨能力。通过对EELS谱进行密度泛函(DFT)的拟合,可以进一步获得准确的元素价态甚至是电子态的信息。

AI.Sharab等在研究氟化铁和碳的纳米复合物电极材料时利用STEM—EELS联合技术研究了不同充放电状态时氟化铁和碳的纳米复合物的化学元素分布、结构分布及铁的价态分布[5]。

(5)扫描透射X射线显微术(STXM)

基于第三代同步辐射光源以及高功率实验室X 光源、X射线聚焦技术的新型谱学显微技术。采用透射X 射线吸收成像的原理,STXM 能够实现具有几十个纳米的高空间分辨的三维成像,同时能提供一定的化学信息。STXM 能够实现无损伤三维成像,对于了解复杂电极材料、固体电解质材料、隔膜材料、电极以及电池可以提供关键的信息,而且这些技术可以实现原位测试的功能。

Sun等研究碳包覆的Li4Ti5O12与未包覆之前相比,具有更好的倍率性能和循环性能。作者利用STXM—XANES和高分辨的TEM确定了无定型的碳层均一地包覆在LTO颗粒表面,包覆厚度约为5 nm。其中通过STXM作者获得了单个LTO颗粒的C、Ti、O分布情况,其中C包覆在颗粒表面[6]。

(6)X射线吸收近边谱(XANES)

是标定元素及其价态的技术,不同化合物中同一价态的同一元素对特定能量X射线有高的吸收,我们称之为近边吸收谱。在锂电池领域中,XAS主要用于电荷转移研究,如正极材料过渡金属变价问题。

Kobayashi等用XANES研究了LiNi0.80Co0.15Al0.05O2正极材料。XANES检测到颗粒表面含有Li2Co3和其它额外立方相杂质[7]。

(7)X射线荧光光谱分析(XRF)

利用初级X射线光子或其它微观离子激发待测物质中的原子,使之产生荧光(次级X射线)而进行物质成分分析和化学态研究的方法。按激发、色散和探测方法的不同,分为X射线光谱法(波长色散)和X射线能谱法(能量色散)。根据色散方式不同,X射线荧光分析仪相应分为X射线荧光光谱仪(波长色散)和X射线荧光能谱仪(能量色散)。XRF被工业界广泛应用于锂离子电池材料主成分及杂质元素分析。对某些元素检出限可以达到10-9的量级。

2、形貌表征

(1)扫描电镜(SEM)

收集样品表面的二次电子信息,反应样品的表面形貌和粗糙程度,带有EDS配件的SEM可以进一步分析元素种类、分布以及半定量的分析元素含量。虽然SEM的分辨率远小于TEM,但它仍是表征电池材料的颗粒大小和表面形貌的最基本的工具

李文俊等利用密封转移盒转移样品的基础上,重新设计了针对金属锂电极的扫描电镜的样品托架,研究了金属锂电极在Li的嵌入和脱出过程中表面孔洞和枝晶的形成过程[8]。

(2)透射电镜(TEM)

材料的表面和界面的形貌和特性,在关于表面包覆以及阐述表面SEI的文献中多有介绍。TEM也可以配置能谱附件来分析元素的种类、分布等。与SEM相比TEM能观察到更小的颗粒,并且高分辨透射电镜可以对晶格进行观察,原位TEM的功能更加强大,在TEM电镜腔体中组装原位电池,同时借助于TEM的高分辨特性,对电池材料在循环过程中的形貌和结构演化进行实时的测量和分析

黄建宇等利用原位样品杆对SnO2在离子液体中嵌脱锂过程中的形貌和结构演化进行了原位表征。随后,他们对TEM原位电池实验的装置进行了改进,利用在金属Li上自然生产的氧化锂作为电解质,代替了原先使用的离子液体,提高了实验的稳定性,更好地保护了电镜腔体[9,10]。

1.做TEM测试时样品的厚度最厚是多少 ?

TEM的样品厚度最好小于100nm,太厚了电子束不易透过,分析效果不好。

2.请问样品的的穿晶断裂和沿晶断裂在SEM图片上有各有什么明显的特征?

在SEM图片中,沿晶断裂可以清楚地看到裂纹是沿着晶界展开,且晶粒晶界明显;穿晶断裂则是裂纹在晶粒中展开,晶粒晶界都较模糊。

3.做TEM测试时样品有什么要求?

很简单,只要不含水分就行。如果样品为溶液,则样品需要滴在一定的基板上(如玻璃),然后干燥,再喷碳就可以了。如果样品本身导电就无需喷碳。

4.水溶液中的纳米粒子如何做TEM?

透射电镜样品必须在高真空中下检测,水溶液中的纳米粒子不能直接测。一般用一个微栅或铜网,把样品捞起来,然后放在样品预抽器中,烘干即可放入电镜里面测试。如果样品的尺寸很小,只有几个纳米,选用无孔的碳膜来捞样品即可。

5.粉末状样品怎么做TEM?

扫描电镜测试中粉末样品的制备多采用双面胶干法制样,和选用合适的溶液超声波湿法制样。分散剂在扫描电镜的样品制备中效果并不明显,有时会带来相反的作用,如干燥时析晶等。

6.EDS与XPS测试时采样深度的差别?

XPS采样深度为2-5nm,我想知道EDS采样深度大约1um.

7.能谱,有的叫EDS,也有的叫EDX,到底哪个更合适一些?

能谱的全称是:Energy-dispersiveX-ray spectroscopy

国际标准化术语:

EDS-能谱仪

EDX-能谱学

8.TEM用铜网的孔洞尺寸多大?

捞粉体常用的有碳支持膜和小孔微栅,小孔微栅上其实也有一层超薄的碳膜。拍高分辨的,试样的厚度最好要控制在 20 nm以下,所以一般直径小于20nm的粉体才直接捞,颗粒再大的话最好是包埋后离子减薄。

9.在透射电镜上观察到纳米晶,在纳米晶的周围有非晶态的区域,我想对非晶态的区域升温或者给予一定的电压(电流),使其发生变化, 原位观察起变化情况?

用原子力显微镜应该可以解决这个问题。

10.Mg-Al合金怎么做SEM,二次电子的?

这种样品的正确测法应该是先抛光,再腐蚀。若有蒸发现象,可以在样品表面渡上一层金。

11.陶瓷的TEM试样要怎么制作?

切片、打磨、离子减薄、FIB(强烈推荐)

12.透射电子显微镜在高分子材料研究中的应用方面的资料?

殷敬华 莫志深 主编 《现代高分子物理学》(下册) 北京:科学出版社,2001[第十八章 电子显微镜在聚合物结构研究中的应用]

13.透射电镜中的微衍射和选区衍射有何区别?

区别就是电子束斑的大小。选区衍射束斑大约有50微米以上,束斑是微米级就是微衍射。微衍射主要用于鉴定一些小的相

14.SEM如何看氧化层的厚度?通过扫描电镜看试样氧化层的厚度,直接掰开看断面,这样准确吗?

通过扫描电镜看试样氧化层的厚度,如果是玻璃或陶瓷这样直接掰开看断面是可以的;如果是金属材料可能在切割时,样品结构发生变化就不行了,所以要看是什么材料的氧化层。

15.TEM对微晶玻璃的制样要求

先磨薄片厚度小于500um,再到中心透射电镜制样室进行钉薄,然后离子减薄。

16.电子能量损失谱由哪几部分组成?

EELS和HREELS是不同的系统。前者一般配合高分辨透射电镜使用,而且最好是场发射枪和能量过滤器。一般分辨率能达到0.1eV-1eV,主要用于得到元素的含量,尤其是轻元素的含量。而且能够轻易得到相应样品区域的厚度。而HREELS是一种高真空的单独设备,可以研究气体分子在固体表面的吸附和解离状态。

17.研究表面活性剂形成的囊泡,很多文献都用cryoTEM做,形态的确很清晰,但所里只能作负染,能很好的看出囊泡的壁吗?

高分子样品在电子束下结构容易破坏,用冷冻台是最好的方式。做负染是可以看到壁的轮廓,但是如果要细致观察,没有冷冻台大概不行吧?我看过的高分子样品都是看看轮廓就已经很满意了,从来没有提到过更高要求的。

18.hkl、hkl指的是什么?

(hkl)表示晶面指数 {hkl} 表示晶面族指数

[hkl] 表示晶向指数 表示晶向族指数

(h,k,-h-k,l)六方晶系的坐标表示法林海无边

19.电镜测试中调高放大倍数后,光斑亮度及大小会怎样变化?

变暗,因为物镜强了,焦距小了,所以一部分电流被遮挡住了,而亮度是和电流成正比的。由于总光束的强度是一定的,取放大倍率偏大则通过透镜的电子束少,反则电子束大。调节brightness就是把有限的光聚在一起,

20.氧化铝TEM选取什么模式?

氧化铝最好用lowdose模式,这样才会尽量不破坏晶体结构,

21.ZSM-5的TEM如何制样?

在玛瑙研钵中加上酒精研磨,在超声波中分散,滴到微栅上就可以了。辐照的敏感程度与SiAl比有关,SiAl比越大越稳定。

22.对于衍射强度比较弱,寿命比较短的高分子样品,曝光时间是长一些还是短一些?

因为衍射比较弱,虽然长时间曝光是增加衬度的一种方法,但是透射斑的加强幅度更大,反而容易遮掩了本来就弱的多得点,而且样品容易损坏,还是短时间比较合适。我曾经拍介孔分子筛的衍射,比较弱,放6-8s,效果比长时间的好。

23.请教EDXS的纵坐标怎么书写?

做了EDXS谱,发现各种刊物上的图谱中,纵坐标不一致。可能是因为绝对强度值并不太重要,所以x射线能谱图纵坐标的标注并没有一个统一的标准。除了有I/CPS、CPS、Counts等书写方法外,还有不标的,还有标成Intensity或Relative Intensity的,等等。具体标成什么形式,要看你所投杂志的要求。一般标成CPS的比较多,它表示counts per second,即能谱仪计数器的每秒计数。

24.EDAX和ED 相同吗?

EDAX有两个意思,一指X射线能量色散分析法,也称EDS法或EDX法,少用ED表示;二是指最早生产波谱仪的公司---美国EDAX公司。当然生产能谱仪的不只EDAX公司,还有英国的Oxford等。

EDAX指的是扫描电子显微镜(SEM)或透射电子显微镜(TEM)上用的一种附属分析设备---能谱仪,或指的是最早生产能谱仪的公司---美国伊达克斯有限公司,或这种分析技术。当我们在电镜上观察电子显微图像的同时,可以用这种附属设备分析显微图像上的一个点,或一个线或一个面上各个点所发射的X射线的能量和强度,以确定显微图像上我们感兴趣的哪些点的元素信息(种类和含量)。

25.二次衍射

由于电子在物质内发生多次散射,在一次散射不应当出现的的地方常常出现发射,这种现象称为二次衍射。在确定晶体对称性引起的小光反射指数的规律性时,必须注意这种二次衍射现象。二次衍射点是一次衍射的衍射波再次发生衍射的结果。二次衍射点可以出现在运动学近似的两个衍射点的倒易矢量之和所在的位置。特别是,在通过原点的轴上二次衍射点出现的可能性很大。另外也要充分注意 其强度也变强。

26.什么是超晶格?

1970年美国IBM实验室的江崎和朱兆祥提出了超晶格的概念.他们设想如果用两种晶格匹配很好的半导体材料交替地生长周期性结构,每层材料的厚度在100nm以下,如图所示,则电子沿生长方向的运动将会产生振荡,可用于制造微波器件.他们的这个设想两年以后在一种分子束外延设备上得以实现.可见,超晶格材料是两种不同组元以几个纳米到几十个纳米的薄层交替生长并保持严格周期性的多层膜,事实上就是特定形式的层状精细复合材料。

27.明场像的晶格中白点是金属原子吗?

由于受电子束相干性、透镜的各种像差、离焦量以及样品厚度等因素的影响得到的高分辨像一般不能直接解释,必须进行图像模拟,所以图中白点是不是金属原子不好说,要算一下才知道。

28.碳管如何分散做TEM?

看碳管最好用微栅,由于碳膜与碳管反差太弱,用碳膜观察会很吃力。尤其是单壁管。另外注意不要将碳膜伸进去捞,(这样会两面沾上样品,聚不好焦)样品可以滴、涂、抹、沾在有碳膜的面上,表面张力过大容易使碳膜撑破。

29.不同极靴的分辨率

极靴分为:超高分辨极靴、高分辨极靴、高倾斜极靴。超高分辨极靴点分辨率在0.19nm,高分辨极靴点分辨在0.24nm,但是实际情况是达不到的。场发射与LaB6的分辨率是一样的,就是速流更加稳定,亮度高是LaB6亮度的100倍。

30.如果机器放电了——电子枪内充足氟里昂到规定指标。

在电压正常,灯丝电流也正常的情况下,把所有的光阑都撤出,但是还是看不到光线——电子枪阀未打开。

撤出所有光阑,有光束,但是有一半被遮挡住,不知是什么原因——shut 阀挡着部分光线。

31.标尺大小怎么写?

标尺只能用1、2、5这几个数比如1、2、5、10、20、50、100、200、500,没有用其他的。

32.TEM和STEM图像的差别?

TEM成像:照明平行束、成像相干性、结果同时性、衬度随样品厚度和欠焦量发生反转。由于所收集到散射界面上更多的透过电子,像的衬度更好!

STEM成像:照明会聚束、成像非相干、结果累加性,在完全非相干接收情况下像的衬度不随样品厚度和欠焦量反转,可对更厚一点的样品成像。

33.纳米环样品品(nanorings)怎么制样?

土办法,把铜网放到你的样品里,手动摇一会即可。这样做样品可以不用乙醇分散的,观察前用洗耳球吹掉大颗粒即可,一般的纳米级样品这样都能挂样。只是刮样的均匀度比较差些。

还有取一点样品放到研钵里,用铜网像工地筛沙一样多抄几次也是可以的。

34.关于醋酸双氧铀的放射性

醋酸双氧铀中铀236的半衰期长达2400万年,没多大问题,可以放心用!

35.内标法

采用已知晶格样品(金颗粒),在相同电镜状态下(高压),对应一些列相机长度,相机长度L就是你说的0.4、0.8和1米,通过电镜基本公式H=Rd=Ls,(H相机常数s为波长),可以得到一组相机常数,保留好。以后就可以很方便的用了

36.什么软件可以模拟菊池图?

JEMS可以,画电子衍射花样的时候选上菊池线就行了。

37.透射电镜的金属样品怎么做?

包括金属切片、砂纸打磨、冲圆片、凹坑研磨、双喷电解和离子减薄、FIB制样(块体样品的制样神器)。

38.透射电镜薄膜样品制备的几种方法(真空蒸发法,溶液凝固法,离子轰击减薄法,超薄切片法,金属薄膜样品的植被)的介绍

可以参考《电子显微分析》章晓中老师、《材料评价的分析电子显微学方法》刘安生老师

39.四氧化锇的问题

样品用四氧化锇溶液浸泡,一方面可以对弹性体进行染色,一方面可以使塑料硬化。四氧化锇挥发性果真强,把安醅瓶刻痕,放进厚玻璃瓶,用橡皮塞塞紧,晃破安醅瓶,用针筒注蒸馏水,使其溶解,当把橡皮塞拿开换成玻璃塞时,发现橡皮塞口部已经完全被熏黑!使用时一定要加防护,戴防护面具,手套,在毒气柜中操作,毒气柜上排气一定要好.这样对自己和他人都好!

40.制作高分子薄膜(polymer film)电镜样品

一般都是在玻璃或者ITO衬底上甩膜后,泡在水中,然后将膜揭下来。不过对于厚度小于100nm的薄膜,是很难用这种方法揭下来的。高分子溶液甩膜在光滑的玻璃上面(玻璃要用plazmaor uv ozon处理过), 成膜后立即放在水里面,(不要加热和烘干,否则取不下来)利用水的张力,然后用塑料镊子从边缘将薄膜与玻璃分开,可以处理大约70nm的膜。然后将膜放在grid上面就可以了!

41.如何将三个晶面指数转化成四个的晶面指数

三轴晶面指数(hkl)转换为四轴面指数为(hkil),其中i=-(h+k)

六方晶系需要用四轴指数来标定,一般的晶系如立方、正交等用三轴指数就可以了。

42.能谱的最低探测极限

在最佳的实验条件下,能谱的最低探测极限在0.01-0.1%上下,离ppm还有些距离。如果可以制成TEM样品,也许可以试试电子全息。半导体里几个ppm的参杂可以用这个方法观察到。

43.CCD比film的优势

当前的TEM CCD已经可以完全替代底片,在像素点尺寸(小于20um)、灵敏度、线性度、动态范围、探测效率和灰度等级均优于film。由于CCD极高的动态范围,特别适合同时记录图像和电子衍射谱中强度较大的特征和强度较弱的精细结构。

44.小角度双喷,请教双喷液如何选择?

吴杏芳老师的书上有一个配方:

Cu化学抛光:50%硝酸+25%醋酸+25%磷酸 20摄氏度

CuNi合金:电解抛光 30mL硝酸+50mL醋酸+10mL磷酸

--电子显微分析实用方法,吴杏芳 柳得橹编

45.非金属材料在喷金时,材料垂直于喷金机的那个垂直侧面是否会有金颗粒喷上去?

喷金时正对喷头的平面金颗粒最多,也是电镜观察的区域,侧面应该少甚至没有,所以喷金时一般周围侧面用铝箔来包裹起来增加导电性。

46.Z衬度像是利用STEM的高角度暗场探测器成像,即HAADF。能否利用普通ADF得到Z衬度像?

原子分辨率STEM并不是HAADF的专利,ADF或明场探头也可以做到,只是可直接解释性太差,失去了Z衬度的优势。HAADF的特点除了收集角高以外,其采集灵敏度也大大高于普通的ADF探头。高散射角的电子数不多,更需要灵敏度。ADF的位置通常很低,采集角不高(即使是很短的相机长度),此外它的低灵敏度也不适合弱讯号的收集。

47.透射电镜简单分类?

透射电镜根据产生电子的方式不同可以分为热电子发射型和场发射型。热电子发射型用的灯丝主要有钨灯丝和六硼化镧灯丝;场发射型有热场发射和冷场发射之分。

根据物镜极靴的不同可以分为高倾转、高衬度、高分辨和超高分辨型。

48.TEM要液氮才能正常操作吗?

不同于能谱探头,TEM液氮冷却并不是必须的,但它有助于样品周围的真空度,也有助于样品更换后较快地恢复操作状态。

49.磁性粒子做电镜注意事项?

1.磁性粒子做电镜需要很谨慎,建议看看相关的帖子

2.分散剂可以用表面活性剂,但是观察的时候会有局部表面活性剂在电子束辐照下分解形成污染环,妨碍观察。

50.电压中心和电流中心的调整?

HT wobbler调整的是电压中心,OBJ wobbler调整的是电流中心,也有帮助聚焦的wobbler-image x和imagey。

51.水热法制备的材料如何做电镜?

水热法制备的材料容易含结晶水,在电子束的辐照下结构容易被破坏,试样在电镜的高真空中过夜,有利于去掉部分结晶水。估计你跟操作的老师说了,他就不让你提前放样品了。

52.TEM磁偏转角是怎么一会事,而又怎样去校正磁偏转角?

一般老电镜需要校正磁偏转角,新电镜就不用做了。现在的电镜介绍中都为自动校正磁偏转角。

53.分子筛为什么到导电?

分子筛的情况应该跟硅差不多吧。纯硅基本不导电,单硅原子中的电子不像绝缘体中的电子束缚的那么紧,极少量的电子也会因电子束的作用而脱离硅原子,形成少量的自由电子。留下电子的空穴,空穴带有正电,起着导电作用。

54.电子衍射图谱中都会发现有一个黑色的影子,是指示杆的影子,影子的一端指向衍射中心。为什么要标记出这个影子在衍射图谱中呢?

beam stopper主要为了挡住过于明亮的中心透射斑,让周围比较弱的衍射斑也能清晰的显现。

55.HAADF-STEM扫描透射电子显微镜高角环形暗场像

高分辨或原子分辨原子序数(Z)衬度像(high resolution or atomic resolution Z-contrast imaging)也可以叫做扫描透射电子显微镜高角环形暗场像(HAADF-STEM)这种成像技术产生的非相干高分辨像不同于相干相位衬度高分辨像,相位衬度不会随样品的厚度及电镜的焦距有很大的变化。像中的亮点总是反映真实的原子。并且点的强度与原子序数平方成正比,由此我们能够得到原子分辨率的化学成分信息。

56.TEM里的潘宁规

测量真空度的潘宁规不测量了,工程师让拆下清洗,因为没有"内卡钳",无法完全拆卸,只好用N2吹了一会儿,重新装上后也恢复正常了,但是工程说这样治标不治本,最好是拆卸后用砂纸打磨,酒精清洗.

57.电子衍射时可否用自动曝光时间,若手动曝光.多少时间为宜?

电子衍射不能用自动曝光,要凭经验。一般11或16秒,如果斑点比较弱,要延长曝光时间。

58.CCD相机中的CCD是什么意思?

电荷耦合器件:charge-coupled device

具体可以参见《材料评价的分析电子显微方法》中Page35-42页。

59.有公度调制和无公度调制

有许多材料在一定条件下,其长程关联作用使得晶体内局域原子的结构受到周期性调制波的调制。若调制周期是基本结构的晶格平移矢量的整数倍,则称为有公度调制;若调制周期与基本结构的晶格平移矢量之比是个无理数,称为无公度调制。涉及的调制结构可以是结构上的调制,成分上的调制,以及磁结构上的调制。调制可以是一维的、二维的,和三维的。

60.高分辨的粉末样品需要多细?

做高分辨的粉末样品,就是研磨得很细、肉眼分辨不了的颗粒。几十个纳米已经不算小了。颗粒越小,越有可能找到边缘薄区做高分辨,越有利于能损谱分析;颗粒越大,晶体越容易倾转到晶带轴(比如做衍射分析),X-光的计数也越高。

61.电镜灯丝的工作模式?

钨或LaB6灯丝在加热电流为零时,其发射电流亦为零。增加加热电流才会有发射电流产生,并在饱和点后再增加加热电流不会过多地增加发射电流。没有加热电流而有发射电流,实际上就是冷场场发射的工作模式。但这也需要很强的引出电压(extraction voltage)作用在灯丝的尖端。

62.晶体生长方向?

晶体生长方向就是和电子衍射同方向上最低晶面指数的一个面,然后简化为互质的指数即可。比如如果是沿着晶体的生长方向上是(222),那么应该(111)就是生长方向。

63.N-A机制

小单晶慢慢张大,最后重结晶成单晶,叫做N-A机制,nucleation-aggregation mechanism.

64.透射电镜能否获得三维图象?

可以做三维重构,但需要特殊的样品杆和软件。

65.纳米纤维TEM

做PAN基碳纤维,感觉漂移现象可能是两个原因造成的:一是样品没有固定好,二是导电性太差。我们在对纤维样品做电镜分析时一般采用把纤维包埋然后做超薄切片的方法,如果切的很薄(30~50nm),可以不喷金,直接捞到铜网中观察即可。

66.离子减薄过程

在离子减薄之前,应该用砂纸和钉薄机对样品进行机械预减薄,机械预减薄后样品的厚度为大约10微米,再进行离子减薄。

离子减薄时,先用大角度15-20度快速减薄,然后再用小角度8-10度减至穿孔。

67.四级-八级球差矫正器的工作原理?

如果想要了解一下原理,看看相关的文章就可以了。

比如

Max Haider et al,Ultramicroscopy 75 (1998) 53-60

Max Haider et al,Ultramicroscopy 81 (2000) 163-175

68.明场象和暗场象

明场象由投射和衍射电子束成像,

暗场象由某一衍射电子束(110)成像,看的是干涉条纹。

69.在拍照片时需要在不同的放大倍数之间切换,原先调好的聚光镜光阑往往会在放大倍数改变后也改变位置,也就是光斑不再严格同心扩散,为什么?

这很正常,一般做聚光镜光阑对中都是在低倍(40K)做,到了高倍(500K)肯定会偏,因为低倍下对中不会对的很准。

一般来说,聚光镜光阑我都是最先校正的,动了它后面那几项都要重新调的。准备做高分辨的时候,一般直接开始就都在准备拍高分辨的倍数下都合好了,这样比较方便。

70.能量过滤的工作原理是什么?

能量过滤像的工作原理简单的可以用棱镜的分光现象来理解,然后选择不能能量的光来成像。

能量过滤原理是不同能量(速度)电子在磁场中偏转半径不一样(中学时经常做的那种计算在罗伦茨力作用电子偏转半径的题),那么在不同位置上加上一个slit,就这样就过滤出能量了。

71.真空破坏的后果

影响电镜寿命倒不会,影响灯丝寿命是肯定的。

72.EDX成分分析结果每次都变化

EDX成分分析结果每次都变化的情况其实很简单,在能谱结果分析软件中,View菜单下有个Periodic table, 在其ROI情况下选择你要作定量的元素,鼠标右键选出每个元素所要定量的峰,重新作定量就不会出现你所说的问题。

73.使用2010透射电子显微镜时,发现:当brightness聚到一起时,按下imag x 呈现出两个非同心的圆,调整foucs就会使DV 只不等于零。请问各位,如果想保持dv=0,需要进行怎样的调整?

把dv调节到+0,然后用z轴调节样品高度,使imagex的呈最小抖动即可。

74.图象衬度问题

乐凯的胶片衬度比柯达的要差一些,但性价比总是不错的。建议使用高反差显影液来试试。

可以用暗场提高衬度,我一直在用暗场拍有机物形貌!wangmonk(2009-6-06 07:33:02)

75.高分子染色的问题

磷钨酸是做负染样品用的染液,我们通常用1%或2%的浓度,浓度大了会出现很多黑点或结晶状团块.另外样品本身浓度很关键,可多试几个浓度.样品中如果有成分易与染液结合的也会出现黑点或黑聚集团.磷钨酸用来染色如尼龙即聚酰胺可使其显黑色,以增加高分子材料的衬度。而锇酸可以使带双键的高分子材料显黑色。

根据自己的要求选择合适的染色剂是观察的关键!

76.什么是亚晶?

亚晶简单的说就是在晶粒内部由小角晶界分隔开的,小角晶界主要由位错构成,相邻的亚晶的晶体取向差很小。

77.FFT图与衍射图有什么对应的关系呢?

它们都是频率空间的二维矢量投影, 都是和结构因子有关的量,都可以用于物相标定,但在衍射物理中含义不同,运算公式不同,不可混为一谈。

FFT是针对TEM图像的像素灰度值进行的数学计算,衍射是电子本身经过样品衍射后产生的特殊排列。

78.调幅结构的衍射图什么样的?

衍射斑点之间有很明显的拉长的条纹。

80.什么是明场、暗场、高分辨像?

在衍射模式下,加入一个小尺寸的物镜光阑,只让透射束通过得到的就是明场像;只让一个衍射束通过得到的就是暗场像;加一个大的物镜光阑或不加,切换的高倍(50万倍以上)成像模式,得到高分辨像。当然能不能得到高分辨像还要看晶带轴方向、样品的厚度和离焦量等是否合适。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/170495.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-03-26
下一篇2023-03-26

发表评论

登录后才能评论

评论列表(0条)

    保存