常用的EDX探测器是硅渗锂探测器。当特征X射线光子进入硅渗锂探测器后便将硅原子电离,产生若干电子-空穴对,其数量与光子的能量成正比。利用偏压收集这些电子空穴对,经过一系列转换器以后变成电压脉冲供给多脉冲高度分析器,并计数能谱中每个能带的脉冲数。
SEM:材料的表面形貌,形貌特征。配合EDX可以获得材料的元素组成信息TEM:材料的表面形貌,结晶性。配合EDX可以获得材料的元素组成
FTIR:主要用于测试高分子有机材料,确定不同高分子键的存在,确定材料的结构。如单键,双键等等
Raman:通过测定转动能及和振动能及,用来测定材料的结构。
CV:CV曲线可以测试得到很多信息,比如所需电沉积电压,电流,以及半导体行业可以得到直流偏压
EIS:EIS就是电化学交流阻抗谱测试可以得到电极电位,阻抗信息,从而模拟出系统内在串联电阻,并联电阻和电容相关信息
BET:主要是测试材料比表面积的,可以得到材料的比表面积信息。
XRD:主要是测试材料的物性,晶型的。高级的XRD还可以测试材料不同晶型的组分。
质谱:主要用于鉴定材料的化学成分,包括液相质谱,气象质谱
EDX指的是能量散射型X射线荧光光谱仪,也有人叫EDXRF。
EDS是能谱仪。
XRF是比EDS更准确的定量。
XRF的应用
a) X射线用于元素分析,是一种新的分析技术,但在经过二十多年的探索以后,现在已完全成熟,已成为一种广泛应用于冶金、地质、有色、建材、商检、环保、卫生等各个领域。
b) 每个元素的特征X射线的强度除与激发源的能量和强度有关外,还与这种元素在样品中的含量。
c) 根据各元素的特征X射线的强度,也可以获得各元素的含量信息。这就是X射线荧光分析的基本原理。
优点:
a) 分析速度高。测定用时与测定精密度有关,但一般都很短,2~5分钟就可以测完样品中的全部待测元素。
b) X射线荧光光谱跟样品的化学结合状态无关,而且跟固体、粉末、液体及晶质、非晶质等物质的状态也基本上没有关系。(气体密封在容器内也可分析)但是在高分辨率的精密测定中却可看到有波长变化等现象。特别是在超软X射线范围内,这种效应更为显著。波长变化用于化学位的测定。
c) 非破坏分析。在测定中不会引起化学状态的改变,也不会出现试样飞散现象。同一试样可反复多次测量,结果重现性好。
d) X射线荧光分析是一种物理分析方法,所以对在化学性质上属同一族的元素也能进行分析。
e) 分析精密度高。
f) 制样简单,固体、粉末、液体样品等都可以进行分析。
缺点:
a)难于作绝对分析,故定量分析需要标样。
b)对轻元素的灵敏度要低一些。
c)容易受相互元素干扰和叠加峰影响。
其实是一样的,但是美国人一般叫EDS,英国人一般叫EDX,国内叫EDS的多。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)