水滴落在超疏水表面是什么样子,它的性质是怎样形成的?

水滴落在超疏水表面是什么样子,它的性质是怎样形成的?,第1张

自然界中有许多天然超疏水表面,其中最常见的是荷叶, 荷叶表面的高分辨率扫描电子显微镜SEM图像,可以观察到荷叶表面有 5 ~ 10 微米的突起无序分布,并且突起具有直径为 100 ~ 200 纳米的特殊毛状纳米结构。这些复合表面纹理包括微米和纳米范围内的分层结构,放大了荷叶表面蜡膜的疏水性,从而获得 150 ~ 160 ° 的接触角和大约 2 ° 的滑动角。

一般来说,超疏水表面被定义为其表面的水滴必须满足水接触角>150 °,滑动角 <10 °,这意味着当水滴落在超疏水表面上时,它们几乎是球形的并且容易滚动。这些表面由于具有自净,耐腐蚀,微流体的滑移流,抗生物污染,防雪防雾等优点,可用于防腐,透明涂层的防反射,需要功能织物的特殊润湿性,防雾天线防冰,玻璃,以及一些微流体装置等等。

虽然国内外对超疏水表面的研究较多,但基于论文对超疏水表面的研究并不多。由于纸中存在羟基,羧基,磺酸基等具有亲水性,从而限制了其在高疏水性的某些领域的应用,超疏水纸的成功制备将充分发挥纸的潜在价值,拓宽其应用范围。据报道,纳米涂层是利用连续辊在纸板上形成的。

在常压下的滚压过程,通过纳米结构的透明涂层主要由TiO2 纳米颗粒、液体火焰射流LFS组成用于沉积在大气条件下的颜料涂层纸板生产线上,所获得的纸板表面测得的最高水接触角超过 160 °,当水滴到时,表面会出现反弹现象,而当水滴静止时,它们有很强的附着力。

荷叶的叶面不沾水的原因是因为荷叶表面有着许多的蜡状突起物质,这是一种非常复杂的多重纳米和微米级的超微结构,荷叶的叶片表面上乳突的平均大小约为10微米,而每一个乳突由许多直径200纳米左右的突起物质组成,当接触到雨水的时候,就会让雨水形成球状,吸附荷叶上的灰尘。

荷叶自洁效应”就是通过荷叶上面的水珠,将叶片表面的灰尘给吸附带走,这样就能够让荷叶一直都保持洁净的状态。

而荷叶为什么能够让雨水在上面形成水珠,那是因为荷叶表面的这些乳突状结构物质具有极强的疏水性,所以雨水会在自身的表面张力作用下形成球状,而合页表面的蜡状物质也能够阻挡雨水的侵蚀,这让形成球状的雨水在荷叶上面滚动着,顺便吸附灰尘,最后会因为重心作用而滚出荷叶表面。

北宋理学家周敦颐曾经写了这么一篇散文《爱莲说》,文中就这样写道:

“莲之出淤泥而不染,濯清涟而不妖,中通外直,不蔓不枝,香远益清,亭亭净植,可远观而不可亵玩”。

莲与荷差别不大,荷花不仅能够散发出一种独特的清香,我们还可以观察到,它的确能够做到“出淤泥而不染”,另外荷叶也是如此,这与其表面的生物结构也是有很大关系的。

我们常常会在夏日的清晨,看到荷叶上有几滴露珠在初升的太阳的照射下,显得闪闪发光,晶莹剔透。一阵清风吹过,露珠便在荷叶上自由地舞蹈,“自由自在”。露珠之所以能够做到这一点,是与荷叶表面的生物结构有很大关系的。

如果我们把荷叶放到显微镜下仔细观察,便可以看到,荷叶表面有许多微米级大小、微米级间距的“小柱子”,专业名称叫做“乳突”,每个乳突表面有存在着众多的纳米级蜡状突起。这种微米级、纳米级的特殊结构,再受到蜡状物对于液体物质的排斥效应,使得液滴类的物质,比如露珠、水滴等,只能在乳突顶端“徘徊”,却从来无法进入到乳突之间,即荷叶表面的深层。这种液滴与荷叶表面呈现出的排斥现象被我们称作为“荷叶效应”或“疏水效应”。

由于会有液滴类的物质存在于荷叶表面,这是十分有利于保持荷叶表面的清洁的,这也就被叫做荷叶的自洁;此外,当空气中漂浮的各种大量有害细菌和真菌,抑或是其他一些污染物到达荷叶表面后,都无法存在很长时间,主要就是由于水形成水珠,最终是洗去了荷叶表面的各类污染物。

荷花

毕竟雨水、尘埃以及各类污染物对于荷叶表面的“小柱子”间的距离来说,实在是庞然大物,是永远难以“入侵”荷叶内部的结构的。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/181815.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-03-28
下一篇2023-03-28

发表评论

登录后才能评论

评论列表(0条)

    保存