沉积岩中的胶结物成分对岩石的工程性质有何影响

沉积岩中的胶结物成分对岩石的工程性质有何影响,第1张

胶结物成分对岩石的硬度、能干性等都有影响。

泥质胶结相对于钙质胶结和硅质胶结较软。

1.定义:胶结物是碎屑岩在沉积、成岩阶段,以化学沉淀方式从胶体或真溶液中沉淀出来,充填在碎屑颗粒之间的各种自生矿物

2.成因:化学沉淀

3.常见的胶结物类型

(1)硅质胶结物:蛋白石、玉髓、石英

(2)碳酸盐胶结物:方解石、白云石、菱铁矿等

(3)铁质胶结物:赤铁矿、褐铁矿

(4)其它胶结物:粘土矿物、石膏、硬石膏、黄铁矿、磁铁矿、磷酸盐类矿物等

泥质一般较软,如果填隙物多的话,可以看到贝壳状断口,比较滑,用手捻不会有沙质感,铁质一般颜色比较深,红褐色,硅质较硬,一般在石英、长石质石英砂岩中,沉积石英岩中,碎屑成份一般含石英较多,色浅(一般浅灰白,有铁染时呈肉红色),石英多时会看到岩石断面上的油脂光泽,钙质一般出现在碳酸盐岩地区,与硅质特征有些相近,但硬度较低,角砾成分也以碳酸盐为主。

泥质、铁质、钙质、硅质胶结物在显微镜下简单的能区别,但是铁质和钙质区分不开。再说泥质可以有钙质也可以有铁质,楼主的问题也欠妥。楼主是想区分胶结物形态呢还是想做胶结物的成分,但是我说得这些方法绝对有用,而不像5楼说得一物用处,我觉得你们还没接触这些方法,你可以和你们的导师探讨一下。

假设片中有大量碳酸盐胶结物不能确定类型,x射线显示为白云石,只需要鉴定其铁含量就能确定矿物,当然如果连胶结物都不认识,x射线显示石英,你非把这个做胶结物,那就没办法了。

阴极发光也是同样道理,首先你得知道,哪些是胶结物,哪些不是,在加以判断,

在阴极发光下 铁含量高的胶结物 一般发红色光;镁含量高的胶结物一般发橙色光;菱铁矿发橙红色光;方解石发黄色-橙色光;白云石暗红色光,铁白云石不发光;菱镁矿橙色光。

人工方解石,颜色偏粉一些,这些很多科研和外协项目都是通过这些手段区分胶结物的。

茜素红是典型的也是最简单的区分碳酸盐的方法:胶结物方解石遇S茜素红,变粉红-红,颜色深浅由方解石中铁含量决定;白云石遇S茜素红不变色;铁白云石变蓝色;菱铁矿不变色。菱铁矿和白云石就得配合阴极发光, 菱铁矿和白云石发光不同。

硅质,用显微镜完全可以鉴别。

泥质,如果想知道成分,必须x射线,其他方法对于泥质都没用,显微镜下的泥质 无法区分, 染色由于泥质为泥晶太小不能被染色。阴极发光也可以判断大概成分 ,但是不能确定,只有x射线能确定泥质成分。

扫描电镜(SEM),放大倍数可以到几万倍,而且是立体的,能看到很多偏光镜下不能看到的形态,泥晶甚至包壳那么细小,在镜下也是很大的,产状形态明显的不同。像伊利石在偏光下很多时候只能定成粘土,但是SEM下能看到发丝状、搭桥状,高岭石能看到书页状、蠕虫状 。SEM主要是观察形态,区别微小颗粒,此外还可以配能谱,能谱能显示你所选择矿物的元素组成和百分比。

为了解决有色宝石学中不断出现的新问题,波谱分析、微束等现代测试技术得以引入及应用。表1-5-1列出了电磁波谱在宝石学中的应用,各种不同的电磁波与物质相互作用产生各种谱学信息,这类仪器大多称为分光光度计(光谱仪)。

表1-5-1 电磁波谱在宝石现代测试中的应用

微束是指用电子束、离子束、激光束、质子束或其他粒子束来激发样品的微区,微束分析中,微束激发源(即入射光束)与样品作用产生各种信息,产生的信息主要有:特征X射线、连续X射线、二次电子、二次离子、背散射电子、俄歇电子、透射电子、吸收电子、阴极荧光等。将这些信息收集、分析处理、放大、转换成各种图像、图谱或强度数字,可进行成分、形貌和结构的直接观察和测定。

在有色宝石学研究中采用的微束和谱学现代测试技术方法主要有紫外—可见光分光光度计、红外光谱仪、X射线粉晶衍射仪、X射线荧光光谱分析仪、电子探针、扫描电镜、拉曼光谱和阴极发光等。

一、傅立叶变换红外光谱仪

1.基本原理

宝石在红外光的照射下,引起晶格(分子)、络阴离子团和配位基的振动能级发生跃迁并吸收相应的红外光而产生的光谱称为红外光谱(Infrared Spectra)。测量和记录红外吸收光谱的仪器称为红外分光光度计(或红外光谱仪)。它利用物质对红外光的选择性吸收,定性或定量分析有色宝石的组成或结构。

红外光谱是波长约为0.78~1000μm的电磁波,通常将整个红外光区分为以下3个部分:

1)远红外光区:波长为25~1000μm,波数为400~10cm-1。一般宝石分析不在此区范围内进行。

2)中红外光区:波长为2.5~25μm,波数为4000~400cm-1。该区的吸收带主要为基频吸收带,可分为两个区域,即基团频率区和指纹区。基团频率区(又称官能团区或特征频率区)分布在4000~1500cm-1区域内,出现的基团特征频率较稳定,可利用该区红外吸收特征峰鉴别宝石中可能存在的官能团。指纹区分布在1500~400cm-1区域,可以通过该区域的图谱来识别特定的分子结构。

3)近红外光区:波长为0.78~2.5μm,波数为12820~4000cm-1,该区的光谱可用于研究稀土和其他过渡金属离子的化合物,以及水、含氢原子团化合物的分析、检测O-H、N-H、C-H伸缩振动,可用于检测宝石充填的胶、蜡或有机染料。

2.仪器组成

在宝石测试和研究中,主要采用傅立叶变换红外光谱仪。如图1-5-1所示,在傅立叶变换红外光谱仪中,首先是把光源发出的光经迈克尔逊干涉仪变成干涉光,再让干涉光照射样品。经检测器(探测器—放大器—滤波器)获得干涉图,由计算机将干涉图进行傅立叶变换得到光谱。其特点是:扫描速度快,适合仪器联用不需要分光,信号强,灵敏度高。

图1-5-1 傅立叶变换红外光谱仪工作原理示意

3.测试方法

1)透射法:透射法包括粉末透射法、直接透射法两种。粉末透射法为有损检测方法,适用于宝石矿物原料,需按要求将样品粉末与溴化钾以1∶100~1∶200的比例混合,压制成一定直径或厚度的透明片,然后进行测定。直接透射法是将宝石直接置于样品台上进行测试。

2)反射法:红外反射光谱(镜、漫反射)在宝石鉴定与研究中具有重要意义。要求待测宝石样品至少有一个抛光良好的光面。对于半透明—不透明的玉石材料,如翡翠、软玉和绿松石,漫反射附件装置可提供令人满意的光谱。

4.应用

红外光谱一般以波数(cm-1)作横坐标,以透过率或吸收率为纵坐标。根据红外光谱的谱带数目、位置、形状及强度等进行分析。主要用途有:

①确定宝石品种②宝石中的羟基、水分子的检测③划分钻石类型④鉴别人工充填处理宝石,如翡翠A货和B货的区别。

二、紫外—可见分光光度计

紫外—可见吸收光谱是在电磁辐射作用下,由宝石中原子、离子或分子的价电子和分子轨道上的电子在电子能级间的跃迁而产生的一种分子吸收光谱。具不同晶体结构的各种有色宝石,其内所含的致色杂质离子对不同波长的入射光具有不同程度的选择性吸收,根据样品吸收波长(波长范围)及吸收程度,对样品中组成成分进行定性或定量分析。按所吸收光的波长区域不同,分为紫外分光光度法和可见分光光度法,合称为紫外—可见分光光度法。

1.结构和工作原理

紫外—可见分光光度计类型很多,其工作原理见图1-5-2,宝石测试中常用的分光光度计如图1-5-3所示。光由单色器分光后经反射镜分解为强度相等的两束光,一束通过参比池,一束通过样品池。光度计能自动比较两束光的强度,此比值即为试样的透射比,经对数变换将它转换成吸光度并作为波长的函数记录下来。双光束分光光度计一般都能自动记录吸收光谱曲线。由于两束光同时分别通过参比池和样品池,还能自动消除光源强度变化所引起的误差。

图1-5-2 紫外可见光分光光度计原理框图

图1-5-3 紫外可见光分光光度计

2.测试方法

用于宝石的测试方法可分为两类,即直接透射法和反射法。直接透射法是将宝石样品的光面或戒面直接置于样品台上,获取宝石的紫外可见吸收光谱,属无损测试方法,但从中获得的有关宝石的信息十分有限反射法是利用紫外—可见分光光度计的反射附件(如镜反射和积分球装置),有助于解决直接透射法在测试过程中遇到的问题。

3.宝石学应用

1)检测人工优化处理宝石。

2)区分某些天然与合成宝石。

3)探讨宝石呈色机理。

三、X射线荧光光谱仪(X-Ray Fluorescence Spectrometry,XRF)

X射线是一种波长在0.001~10nm之间的电磁波。对已镶和未镶的宝石成品、原石、珠串以及宝石材料的粉末等,均可用X射线来进行检测。X射线荧光光谱分析与电子探针分析相似,但不同的是前者激发源使用X射线,后者使用电子束。

1.原理

X射线荧光的波长λ与元素的原子序数Z有关,随着元素的原子序数的增加,特征X射线有规律地向短波长方向移动。各种不同的元素都有本身的特征X射线荧光波长,只要测出荧光X射线的波长,就可知道元素的种类,这是荧光X射线定性分析的基础,荧光X射线的强度与相应元素的含量有一定的关系,这就是用X射线荧光光谱仪进行定量分析的依据。

2.仪器类型

(1)波长色散光谱仪

通过分光晶体对不同波长的X射线荧光进行衍射而达到分光的目的,然后用探测器探测不同波长处的X射线荧光强度。仪器由X射线发生器、晶体分光器、准直器、检测器、多道脉冲分析器、计算机等组成。

(2)能量色散X射线荧光光谱仪(EDXRF)

利用荧光X射线具有不同能量的特点,将其分开并检测,依靠半导体探测器来完成。仪器由X射线发生器、检测器、放大器、多道脉冲分析器、计算机组成。

X射线荧光能谱仪(EDXRF)对X射线的总检测效率比波谱高,在宝石学中应用最广泛。可同时测定样品中几乎所有的元素,分析速度快缺点是能量分辨率差,探测器必须在低温下保存,对轻元素检测有困难。

3.样品制备及测试适用性

样品要求表面抛光。X射线荧光光谱仪的适用性如下:①分析快速、准确、无损,适用于各种宝石②分析的元素范围广,从4Be至92U均可检测③荧光X射线谱线简单,相互干扰少,样品不必分离,分析方法比较简便④分析浓度范围较宽,从常量到微量均可检测,重元素检测限可达10-6量级,轻元素稍差。

4.应用

1)贵金属首饰成色检测。

2)鉴定宝石种属及亚种。

3)区分某些天然宝石和合成宝石。

4)鉴别某些人工优化处理的宝石。

5)判断宝石产地。

图1-5-4 新疆珊瑚化石的粉晶X射线衍射图C—方解石D—白云石

四、X射线粉末衍射(X-ray Diffraction,XRD)

用于测定晶体结构的X射线,波长为0.055~0.25nm,这个波长范围与晶体点阵面的间距大致相当。多晶衍射仪法是利用计数管和一套计数放大测量系统,把接收到的衍射光转换成一个大小与衍射光强成正比的讯号记录下来。多晶衍射所得的基本数据是“d-I”值(衍射面间距和衍射强度),每一种晶体因结构不同,会有不同的衍射样式和衍射强度,都有一套特征的“d-I”数据,图1-5-4所示为新疆吐鲁番珊瑚化石的X射线衍射分析结果,横坐标衍射角为2θ,对应衍射角θ可求d值,纵坐标表示强度I。根据特征的“d-I”数据可以查手册或X射线衍射数据库,得到其物相主要为方解石,还有少量的文石。

X射线粉末衍射法可以不破坏样品,如翡翠,软玉、石英岩玉等做的戒面、耳环和小的挂件等都可用X射线衍射进行物相鉴定。对于大的玉雕或宝石则只能破坏样品,从原石碎块或雕件底部刮下极少量的样品,碾成粉末,然后进行快速的分析以鉴别晶质材料。

五、电子探针(Electron Micro-probe)

电子探针主要用于定量或定性地分析宝石矿物的微区成分、近表面的宝石包裹体的成分、观察宝石表面形貌及结构特征。

1.仪器组成和基本原理

电子探针一般由电子枪、电子透镜、样品室、信号检测、显示系统及真空系统等组成。电子枪用以发射具有一定能量的电子束轰击宝石样品待测微区,在样品表面产生特征X射线、二次电子、背散射电子等信息。通过测定特征X射线的波长,即可确定样品中所含元素的种类,将样品中所测得的某元素的特征X射线强度与标准样品中相同元素的特征X射线强度相比,从而得到该元素在样品中的实际含量。根据二次电子的强度还可作宝石样品的形貌分析。

2.样品制备及要求

宝石样品大小一般要求直径Φ≤25mm,高度H≤10mm。用于定量分析的宝石,样品表面要磨平和抛光,样品表面应具有良好的导电性,若不导电,应在样品表面镀碳膜(金属膜)。

3.分析仪器

电子探针根据收集特征X射线的仪器不同,分为波谱分析和能谱分析两种方法。能谱仪(EDS)中探测器可以接收到更多的X射线,因此检测效率较高。能谱仪的分辨率比波谱仪低,但测试速度快,仅需几分钟就可得到全谱定性分析结果,波谱仪(WDS)只能逐个测定每一元素的特征波长,一次全分析往往需要几个小时。波谱仪可以测量4Be—92U之间的所有元素,能谱仪一般只能分析原子序数在11以上的元素。

4.分析方法

①点分析,用于测定样品上某个指定点的化学成分②线分析,用于测定某种元素沿给定直线分布的情况③面分析,用于测定某种元素的面分布情况。

5.电子探针在宝石学中的应用

1)根据成分鉴定宝石的种类。

2)根据某些微量元素区分天然宝石与合成宝石。

3)根据成分变化特点区分某些优化处理的宝石。

4)研究宝石内部的包裹体成分。

5)根据背散射图像和二次电子图像分析宝石表面微形貌。

六、扫描电镜(Scanning Electronic Microscopy)

扫描电镜用细聚焦的电子束轰击样品表面,通过电子与样品相互作用产生的信息对样品表面或断口形貌进行观察和分析,也可结合能谱仪对样品化学成分进行分析。

1.基本原理

电子束在试样表面扫描,与样品相互作用产生二次电子像(SE)、背散射电子像(BE),特征X射线等信号,这些信号分别被不同的接收器接收而成像。

2.样品制备

样品最大直径一般不超过15mm。如果单为观察形貌像,直径稍大一些(39mm)仍可以使用,但试样必须导电。若不导电,须在表面镀上一层厚约200Å碳或150Å的金。

3.SEM在宝石学上的应用

1)根据二次电子图像或背散射图像观察宝石的表面微形貌。

2)利用扫描电镜所带的能谱仪对宝石的化学成分进行测试。

七、拉曼光谱(Raman Spectrum)

不同物质的分子或不同矿物结构具有不同的拉曼光谱特征。通过分析宝石拉曼光谱的特征峰位、峰强、线型、线宽而达到鉴定识别宝石的目的。

1.基本原理

激光拉曼光谱是一种激光光子与宝石分子发生非弹性碰撞后,改变了原有入射频率的一种分子联合散射光谱,通常将这种非弹性碰撞的散射光光谱称为拉曼光谱。

拉曼散射中,当散射光的频率低于入射光的频率时,分子能量损失,这种类型的散射线称为斯托克斯线若散射光的频率高于入射光的频率,则分子能量增加,这类散射线称为反斯托克斯线。前者是分子吸收能量跃迁到较高能级,后者是分子放出能量跃迁到较低能级。

由于常温下分子通常都处在振动基态,所以拉曼散射中以斯托克斯线为主,反斯托克斯线的强度较低,一般很难观察到。斯托克斯线和反斯托克斯线统称为拉曼光谱。一般情况下,拉曼位移由宝石分子结构中的振动能级所决定,而与其辐射光源无关。

2.仪器结构

激光拉曼光谱仪的主要部件有:激光光源、样品室、分光系统、光电检测器、记录仪和计算机。如图1-5-5和图1-5-6所示。激光光源通常用514.5nm绿色激光。

图1-5-5 激光拉曼光谱仪结构框图

图1-5-6 激光拉曼光谱仪

3.仪器特点

1)测试精度高、灵敏,测量下限可达10-9g微区微量检测,可实现1~2μm微区测试。

2)无损检测,无需特别制样。

3)固相、气相、液相均适用,可定性-定量分析气液相成分,分析CO2、N2、CH4等挥发组分,也可测气液包体的盐度。

4)可测距离表面5mm下的宝石内部包裹体。

4.宝石学中的应用

1)鉴别宝石种:可直接利用拉曼光谱对宝石进行无损鉴定,根据拉曼标准图谱进行比对,确定宝石的种属,与相似宝石区别。

2)利用拉曼光谱对宝石的包裹体进行研究,有利于区别天然宝石和合成宝石、确定宝石产地并对宝石包裹体的成因类型进行研究。拉曼光谱具有分辨率和灵敏度较高且快速无损等优点,特别适用于宝石内部1μm大小的单个流体包体及各类固相矿物包体的鉴定与研究。若在两个物相交界处,则同时产生两个物相的拉曼散射光谱。

3)利用拉曼光谱分析测试技术可以鉴别某些人工优化处理的宝石。

4)区别天然宝石和合成宝石。

八、阴极发光仪(Cathode Luminescence,CL)

阴极发光是物体在从阴极射线管发出的具有较高能量的加速电子束激发下发出可见光的现象。不同宝石由于含有不同的激活剂元素,因而产生不同的阴极发光,其光波波长和强度与该宝石的成分、结构、微量杂质等有关。

1.仪器的组成和功能

仪器主要由高压发生器、真空系统、电子枪、样品室和显微镜组成。仪器各部分作用是:高压发生器产生0~16kV的负高压真空系统,产生和维持5~200Pa的中度真空电子枪发射电子束激发样品发光显微镜用于观察样品发光的显微特征。

2.宝石阴极发光的特征

宝石阴极发光的特征主要包括阴极发光的图案、颜色、亮度和阴极发光光谱等。阴极发光的图案主要研究宝石晶体生长的特点与过程、玉石的结构等阴极发光的颜色主要用来区别不同的发光体,如宝石中不同的生长区、充填物、致色剂等阴极发光的亮度区别发光中心的类型和密度阴极发光的光谱定量地描述宝石阴极发光的颜色和亮度。

3.阴极发光在宝石学中的应用

阴极发光技术是研究金刚石内部结构的重要手段之一。通过高能阴极射线激发金刚石中的杂质和晶格缺陷造成发光中心,从而产生不同的阴极发光图案。这些图案随金刚石生长扭曲、晶格缺陷和杂质的成分、分布情况等变化而变化,为区分天然金刚石与合成金刚石提供关键的证据,也可用于区分淡水珍珠和海水珍珠。阴极发光的样式可揭示淡水珍珠生长和组成的某些特点,研究表明,在阴极射线激发下,淡水养殖珍珠和处理珍珠发黄绿或绿色光,而各色海水养殖珍珠和处理珍珠不发光。市场上很多染色黑珍珠都是淡水珍珠,因此可利用阴极发光与塔希提黑珍珠区别。阴极发光特征可作为无损鉴别海水、淡水养殖珍珠以及处理养殖珍珠的主要依据之一。

目前,关于土体微观结构的名词术语繁多,分类混乱,这可能是由于土的类型多、成因复杂多样造成的。然而,如果人们缺乏对土体结构-成因的深入研究,片面追求名词术语的新颖,把不同成因土的特定的结构名词、术语拿来相互混用,那么势必要造成混乱。因此,当前首要的任务应该是深入进行各类土的结构-成因研究,以解决工程实践问题为准则,不一定强求非必须有“统一”的结构分类方案不可。

1.颗粒组成和形态

恰当和确切地描述红色风化壳的颗粒是比较困难的,因为在不同放大倍数(×100~20000)SEM视域内,土都是由大大小小不同颗粒状物质(并非自形晶的片状晶体)组成的。但是,为了论述方便,参考土粒组的划分,可进行如下的分类;把小于1μm的极细粘粒称为基质;1~2μm称为细粘粒;2~5μm的称为粗粘粒;5~10μm以及少数大于10μm的称为细粉粒级斑晶。

图2-4 图版Ⅱ-12中三水铝石的EDAX谱线图

颗粒:指大于1μm的颗粒及细小斑晶。它们大多都具有非常明显的边界和轮廓,绝大多数呈他形,所以很难据形态来确定其矿物成分;少数为自形,如曲边状及束状的伊利石、长条形的板钛矿和具六角形断面的高岭石、具很好几何形态的水铝英石等。它们绝大多数为溶蚀交代白云石、方解石等粒状矿物而形成的交代变晶矿物,少数为孔隙中淀积形成的自形晶矿物。借助于微区EDAX分析证明,它们多半是单矿物,如絮状的多水高岭石及粒状的高岭石(K)、伊利石(I)、绿泥石(Ch)、次生石英(Q)、板钛矿(Ti)、水铝英石(G),少量方解石(C)、白云石(D)以及赤铁矿、针铁矿等铁矿物(Fe),在视域内还可看见少数交代尚不完全的或正在互相转化的矿物,如伊利石交代方解石(I→C),白云石变为高岭石(D→K),高岭石交代方解石(K→C)以及高岭石转变为三水铝石的情况(K→G)等。另外,研究还表明,有些单矿物晶体的表面,往往附着其他更细小粘土矿物,以致在原状土样的SEM观察中,发现不了这些晶体,例如:对安顺白云岩红色风化壳表层土Pnl-1号样进行了加入分散剂后的沉淀物的分析,经过这种处理其干燥样在SEM下观察,可见到晶形完好的三水铝石(图版Ⅲ-5,图2-4)。

基质:由小于1μm的极微小的颗粒组成,呈粒状、片状。它们或是杂乱地充填于颗粒之间,或是整个样品由基质组成,构成致密基质结构或基质斑状结构(图版Ⅲ-6、图版Ⅲ-7),当土体裂隙之间充填这些细腻基质时,则可见矿物小片呈定向排列的情况。

2.结构连接

红色风化壳的结构连接以粘土基质胶结(简称粘基胶结,图版Ⅲ-6)以及接触胶结为主,少数样为粘基及铁质共同胶结,接触不紧密,靠吸附水膜黏聚力连接起来。用比重计法进行颗粒分析,未加入分散剂的样品,虽经浸泡、研磨和煮沸,但80%~90%的粒径均大于0.01mm,主要属粗粉粒土,说明这些粗粉粒土是水稳性的,但加入六偏磷酸钠分散剂后,50%~55%左右的颗粒变为粘粒级,而且细粘粒占35%~45%,说明红色风化壳土体在自然状态下,仍是以粒团方式存在,分散剂中的高浓度低价钠阳离子,交换了水膜中吸附的高价阳离子,使水膜加厚,因而破坏了粒团的结构连接而使其分散。这一现象说明粒团中粘粒的连接仍是以水膜连接为主。另外,专门取了两种粘土团块进行了SEM及EDAX分析,目的是查明铁质胶结在粒团所起的作用,一类是靠近石灰岩表面附近的被黑色铁、锰质胶结的团块,它们的颗粒和基质与同类土相同,粒间的铁、锰质氧化物或氢氧化物呈蜂巢状连接非常显著(图版Ⅳ-1);另一类是白云岩红色风化壳土体中砖红色铁质胶结团块,粒内、粒间孔隙中球状及葡萄状赤铁矿的胶结非常明显(图版Ⅳ-2),粒间孔隙发育。由此可见,粒团内粘粒的胶结仍是以水膜连接为主的,只是在铁锰质粘土团块中才以铁、锰质胶结。

3.孔隙特征

采用2010型压汞仪对遵义剖面土的孔隙进行了测定,结果见图2-5、表2-2。为说明问题,把土的孔隙分为大孔(>3.7μm)、中孔(3.7~0.37μm)、小孔(0.37~0.037μm)和微孔(<0.037μm)4 类。图表说明,土中孔隙以微孔隙为主,占50%以上,而且孔隙中值也全部落在微孔区间。ZZ 9 号样靠近地表,由于受到卸荷作用等影响,孔隙总体积(141.76mm3/g),明显大于其他3 个样品,随样品埋藏深度的增加,孔隙总体积数值依次增大,与土的含水量及土状态随深度的变化规律相符合。土中微孔和小孔占主要,说明以粒团内孔隙为主。

表2-2 遵义石灰岩红色风化壳各类孔隙百分含量统计表(%)

图2-5 遵义石灰岩红色风化壳土体孔隙特征曲线图

4.结构类型

近十多年来,作者利用扫描电镜(SEM,KYKY-1000型)及其辅助手段——X射线能谱(EDAX,美国TN-5400型)对碳酸盐岩红色风化壳样品进行了大量的观察和分析,总共机时在数百小时以上,重点拍摄的SEM照片及其EDAX分析谱线也都在几百件以上。研究样品取自以石灰岩(贵州遵义,SEM照片上编号ZZ)和白云岩(贵州安顺,SEM照片上编号PN)为母岩的典型碳酸盐岩红色风化壳剖面,取样间距一般为1.5~2m或更密。

根据大量的SEM照片及EDAX谱线,初步划分了贵州安顺及遵义两地碳酸盐岩红色风化壳的微结构类型。由于篇幅所限,每种结构类型只引用了少量的SEM照片及EDAX谱线。需要说明的是,SEM的观察是大量的,而拍摄照片的仅仅是其中的一部分;EDAX能谱分析也是大量的,而打印出结果的也仅仅是其中的一部分。EDAX能谱既能对所拍照片的全部视域进行“全域分析”,也能对某一特定矿物局部视域进行“微区分析”。把进行过微区分析的部位都标以特定的矿物名称符号,如K代表高岭石或多水高岭石、I代表伊利石、Q代表石英、Fe代表含铁矿物、Mn代表含锰的矿物等。EDAX图谱只能给出某种矿物元素含量,在确定矿物名称时,除了考虑矿物的形态外,还参考了该样品的矿物X射线粉晶分析、红外光谱分析及差热分析资料等。

(1)叠片状结构(图版Ⅳ-3)

叠片主要由长条形的埃洛石(长度为1μm左右,厚度

图2-6 图版Ⅳ-3呈叠片状结构的埃洛石EDAX能谱

图2-7 图版Ⅳ-3高岭石全域DEAX能谱

(2)絮状结构(图版Ⅳ-4)

由极细小高岭石碎片堆叠成立体的不规则云朵状和絮状体(>5~10μm)组成,细心观察可发现±1μm的多边形高岭石晶体片,絮间有大小不一的,由

图2-8 图版Ⅳ-4中絮状高岭石EDAX能谱

图2-9 图版Ⅳ-4絮间孔隙铁质氧化物及碎片高岭石EDAX能谱

(3)粒斑状结构(图版Ⅳ-5)

斑状矿物主要为伊利石及多棱角次生石英等,斑状矿物之间为粒状的铁矿物(图2-10)。

图2-10 图版Ⅳ-5中斑状矿物之间铁矿物的EDAX能谱

(4)不规则斑块状结构(图版Ⅴ-1、图版Ⅴ-2)

不规则的斑块主要由伊利石(图2-11)组成,斑块间为不规则的孔隙,斑块5~10μm大小。把该照片与石灰岩的SEM照片(图版Ⅴ-2、图2-12)相比较,可见两者结构上何其相似,说明伊利石交代基岩中方解石的现象是形成该结构的基础。

图2-11 图版Ⅴ-2伊利石EDAX能谱

图2-12 图版Ⅴ-2中方解石EDAX能谱

(5)球粒状结构(图版Ⅴ-3、图版Ⅴ-4)

球粒状结构主要由毛粟状赤铁矿(图2-13)和球粒状针铁矿集合体组成(图2-14)。

图2-13 图版Ⅴ-3中毛粟状赤铁矿EDAX能谱

图2-14 图版Ⅴ-4中球粒状针铁矿集合体的EDAX能谱

(6)曲边-鳞片状结构(图版Ⅴ-5、图版Ⅴ-6)

为砖红色平行条纹状粘土的平行于条纹方向扫描的照片(图版Ⅴ-5),可见伊利石(图2-15)形成的典型的曲边-鳞片状结构。图版Ⅴ-6仍然为由伊利石形成的曲边-鳞片状结构(图2-16),与图版Ⅴ-5不同的是有一些矿物被伊利石交代形成粒状矿物,故能谱中钾的含量较高(图2-16)。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/183548.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-03-29
下一篇2023-03-29

发表评论

登录后才能评论

评论列表(0条)

    保存