lavaan包是由比利时根特大学的Yves Rosseel开发的。lavaan的命名来自于 latent variable analysis,由每个单词的前两个字母组成,la-va-an——lavaan。
为什么说它简单呢? 主要是因为它的lavaan model syntax,如果你会R的回归分析,那它对你来说再简单不过了。
一、语法简介
语法一:f3~f1+f2(路径模型)
结构方程模型的路径部分可以看作是一个回归方程。而在R中,回归方程可以表示为y~ax1+bx2+c,“~”的左边的因变量,右边是自变量,“+”把多个自变量组合在一起。那么把y看作是内生潜变量,把x看作是外生潜变量,略去截距,就构成了lavaan model syntax的语法一。
语法二:f1 =~ item1 + item2 + item3(测量模型)
"=~"的左边是潜变量,右边是观测变量,整句理解为潜变量f1由观测变量item1、item2和item3表现。
语法三:item1 ~~ item1 , item1 ~~ item2
"~~"的两边相同,表示该变量的方差,不同的话表示两者的协方差
语法四:f1 ~ 1
表示截距
此外还有其它高阶的语法,详见lavaan的help文档,一般的结构方程建模分析用不到,就不再列出。
二、模型的三种表示方法
以验证性因子分析举例说明,对于如下图所示的模型:
方法一:最简化描述
只需指定最基本的要素即可,其他的由函数自动实现,对模型的控制力度最弱。只使用于函数cfa()和sem()
model<-'visual=~x1+x2+x3 textual=~x4+x5+x6 speed=~x7+x8+x9' fit <- cfa(model, data = HolzingerSwineford1939)
需要注意的是,这种指定模型的方式在进行拟合时,会默认指定潜变量的第一个测量变量的因子载荷为1,如果要指定潜变量的方差为1,可以:
model.bis <- 'visual =~ NA*x1 + x2 + x3 textual =~ NA*x4 + x5 + x6 speed =~ NA*x7 + x8 + x9 visual ~~ 1*visual textual ~~ 1*textual speed ~~ 1*speed'
方法二:完全描述
需要指定所有的要素,对模型控制力最强,适用于lavaan()函数,适合高阶使用者
model.full<- ' visual =~ 1*x1 + x2 +x3 textual =~ 1*x4 + x5 + x6 speed =~ 1*x7 + x8 +x9 x1 ~~ x1 x2 ~~ x2 x3 ~~ x3 x4 ~~ x4 x5 ~~ x5 x6 ~~ x6 x7 ~~ x7 x8 ~~ x8 x9 ~~ x9 visual ~~ visual textual ~~ textual speed ~~ speed visual ~~ textual +speed textual ~~ speed' fit <- lavaan(model.full, data = HolzingerSwineford1939)
方法三:不完全描述
最简化和完全描述的混合版,在拟合时增加 auto.* 参数,适用于lavaan()函数
model.mixed<- '# latent variables visual =~ 1*x1 + x2 +x3 textual =~ 1*x4 + x5 + x6 speed =~ 1*x7 + x8 +x9 # factor covariances visual ~~ textual + speed textual ~~ speed' fit <- lavaan(model.mixed, data = HolzingerSwineford1939, auto.var = TRUE)
可以设定的参数详见help帮助文档
PS:可以在lavaan()函数里设置参数mimic="Mplus"获得与Mplus在数值和外观上相似的结果,设置mimic="EQS",输出与EQS在数值上相似的结果
三、拟合结果的查看
查看拟合结果的最简单方法是用summary()函数,例如
summary(fit, fit.measures=TRUE)
但summary()只适合展示结果,parameterEstimates()会返回一个数据框,方便进一步的处理
parameterEstimates(fit,ci=FALSE,standardized = TRUE)
获得大于10的修正指数
MI<- modificationindices(fit) subset(MI,mi>10)
此外,还有其他的展示拟合结果的函数,功能还是蛮强大的
四、结构方程模型
(1)设定模型
model<- ' # measurement model ind60 =~ x1 + x2 +x3 dem60 =~ y1 + y2 + y3 + y4 dem65 =~ y5 + y6 + y7 + y8 # regressions dem60 ~ ind60 dem65 ~ ind60 + dem60 # redisual covariances y1 ~~ y5 y2 ~~ y4 +y6 y3 ~~ y7 y4 ~~ y8 y6 ~~ y8'
(2)模型拟合
fit <- sem(model, data = PoliticalDemocracy) summary(fit, standardized = TRUE)
(3)给回归系数设置标签
给回归系数设定标签在做有约束条件的结构方程模型时会很有用。当两个参数具有相同的标签时,会被视为同一个,只计算一次。
model.equal <- '# measurement model ind60 =~ x1 + x2 + x3 + dem60 =~ y1 + d1*y2 + d2*y3 + d3*y4 dem65 =~ y5 + d1*y6 + d2*y7 + d3*y8 # regressions dem60 ~ ind60 dem65 ~ ind60 + dem60 # residual covariances y1 ~~ y5 y2 ~~ y4 + y6 y3 ~~ y7 y4 ~~ y8 y6 ~~ y8'
(4)多组比较
anova(fit, fit.equal)
anova()会计算出卡方差异检验
(5)拟合系数
lavaan包可以高度定制化的计算出你想要的拟合指标值,例如,我想计算出卡方、自由度、p值、CFI、NFI、IFI、RMSEA、EVCI的值
fitMeasures(fit,c("chisq","df","pvalue","cfi","nfi","ifi","rmsea","EVCI"))
(6)多组结构方程
在拟合函数里面设置 group参数即可实现,同样的可以设置group.equal参数引入等式限制
五、作图
Amos以作图化操作见长,目前版本的Mplus也可以实现作图,那R语言呢,自然也是可以的,只不过是另一个包——semPlot,其中的semPaths()函数。
简单介绍一下semPaths()中的主要函数
semPaths(object, what = "paths", whatLabels, layout = "tree", ……)
(1)object:是拟合的对象,就是上文中的“fit”
(2)what:设定图中线的属性, 默认为paths,图中所有的线都为灰色,不显示参数估计值;
semPaths(fit)
若what设定为est、par,则展示估计值,并将线的颜色、粗细、透明度根据参数估计值的大小和显著性做出改变
semPaths(fit,what = "est")
若设置为stand、std,则展示标准参数估计
semPaths(fit,what = "stand")
若设置为eq、cons,则与默认path相同,如果有限制等式,被限制的相同参数会打上相同的颜色;
(3)whatLabels:设定图中线的标签
name、label、path、diagram:将边名作为展示的标签
est、par:参数估计值作为边的标签
stand、std:标准参数估计值作为边的标签
eq、cons:参数号作为标签,0表示固定参数,被限制相同的参数编号相同
no、omit、hide、invisible:隐藏标签
(4)layout:布局
主要有树状和环状两种布局,每种布局又分别有两种风格。
默认为“tree”,树状的第二种风格如下图,比第一种看起来舒服都了
semPaths(fit,layout = "tree2")
第一种环状
semPaths(fit,layout = "circle")
额,都揉成一团了!
试试第二种风格
semPaths(fit,layout = "circle2")
还好一点。如果把Rstudio默认的图片尺寸设计好,作图效果会更棒。
还有一种叫spring的布局,春OR泉?
semPaths(fit,layout = "spring")
看起来跟环状的很像。
详细内容可以阅读以下文献,以及相应的help文档:
[1]Rosseel Y. lavaan: An R package for structural equation modeling[J]. Journal of Statistical Software, 2012, 48(2): 1-36.
1. 列出包所在库的路径.libPaths()
[1] "C:/Program Files/R/R-3.0.2/library"
2. 安装包,括号里面包的名称要加英文引号,在列出的CRAN镜像站点列表中选择一个进行下载,我一般选的是China(Hefei)
install.packages()
例如,install.packages("ggplot2")
3. 包的载入library()或require(),安装完包后,需要加载才能使用其中的函数,此时括号中不使用引号。两者的不同之处在于library()载入之后不返回任何信息,而require()载入后则会返回TRUE,因此require()适合用于程序的书写。
例如
library(ggplto2)
>require(foreign)
Loading required package: foreign
>is.logical(require(foreign))
[1] TRUE
4. 包的更新
update.packages()
5. 包的帮助信息 格式如下,可以查看包中的函数以及说明
help(package="ggplot2")
6. 查看本地的包
6.1 查看默认加载的包,忽略基本的包
getOption("defaultPackages")
>getOption("defaultPackages")
[1] "datasets" "utils" "grDevices" "graphics" "stats" "methods"
[7] "ggplot2"
6.2 查看当前已经加载过的包
(.packages())
[1] "ggplot2" "stats" "graphics" "grDevices" "utils" "datasets" "methods" "base"
6.3 要显示所有可用的包
(.packages(all.available=TRUE))
>(.packages(all.available=TRUE))
[1] "abind" "agricolae" "aplpack" "base" "bitops"
[6] "boot" "car" "caTools" "class" "cluster"
[11] "codetools" "colorRamps" "colorspace" "compiler" "datasets"
[16] "Defaults" "devtools" "dichromat" "digest" "doBy"
[21] "e1071" "effects" "ellipse" "evaluate" "foreign"
[26] "formatR" "Formula" "gdata" "ggplot2" "ggthemes"
[31] "gmodels" "gplots" "graphics" "grDevices" "grid"
[36] "gtable" "gtools" "highr" "Hmisc" "httr"
[41] "KernSmooth" "knitr" "labeling" "lattice" "latticeExtra"
[46] "leaps" "lme4" "lmtest" "LSD" "manipulate"
[51] "markdown" "MASS" "Matrix" "matrixcalc" "memoise"
[56] "methods" "mgcv" "minqa" "multcomp" "munsell"
[61] "mvtnorm" "nlme" "nnet" "nortest" "parallel"
[66] "pixmap" "plyr" "proto" "psych" "quantmod"
[71] "Rcmdr" "RColorBrewer" "Rcpp" "RcppEigen" "RCurl"
[76] "relimp" "reshape2" "rgl" "rJava" "RODBC"
[81] "rpart" "rstudio" "samplesize" "sandwich" "scales"
[86] "schoolmath" "sciplot" "sem" "spatial" "splines"
[91] "stats" "stats4" "stringr" "survival" "tcltk"
[96] "tcltk2" "TH.data" "tools" "TTR" "utils"
[101] "VennDiagram" "whisker" "XLConnect" "xts" "zoo"
7. 卸载包detach(),这是library()的反向操作,此操作主要是为了避免某些包中的函数名称相同,造成冲突,注意与library()的参数不同,detach()参数为detach(package:包的名称),library(包的名称)。
例如
>library(ggplot2) #加载包
>(.packages()) #列出当前已经加载的包
[1] "ggplot2" "stats" "graphics" "grDevices" "utils" "datasets"
[7] "methods" "base"
>detach(package:ggplot2) # 卸载ggplot2包
>(.packages()) #列出当前已经加载的包
[1] "stats" "graphics" "grDevices" "utils" "datasets" "methods"
[7] "base"
8. 自定义启动时候的加载包
如果需要长期使用某个包的话,每次开启都需要输入library(),比较麻烦,因此可以让R启动时自动加载某些包。在R的安装目录/etc/Rprofile.site加入下载语句:
例如让R启动时自动加载ggplot2包
local({old <- getOption("defaultPackages")
options(defaultPackages = c(old, "ggplot2"))})
9. 在文章中引用R软件包,例如引用ggplot2包:
citation(package="ggplot2")
To cite ggplot2 in publications, please use:
H. Wickham. ggplot2: elegant graphics for data analysis. Springer New
York, 2009.
A BibTeX entry for LaTeX users is
@Book{,
author = {Hadley Wickham},
title = {ggplot2: elegant graphics for data analysis},
publisher = {Springer New York},
year = {2009},
isbn = {978-0-387-98140-6},
url = {http://had.co.nz/ggplot2/book},
}
SEM包含以下几个方向。1、市场分析和市场调查。
和线下商业模式类似,每类商品都有自己的使用人群和受众,也有自己的渠道和特点。用户能不能买你的产品归根结底看的是你的商品产生的使用价值是否能满足顾客的需求,并在质量、价格、感受方面优于其他竞争对手。有了这方面的数据资料,你才能让你后续的推广有的放矢。
2、竞争对手分析。
刚才的市场分析已经提到过竞争对手了。对竞争对手的分析不能仅仅看它现在的市场表现,还要结合他的公司背景、产品特点对它进行长远的模拟。自己有没有实力将其压下去。另外竞争对手的营销策略我们是不是可以参考一下,取其精华、弃其糟粕。
3、用户心理分析。
产品能不能卖出去,看的是你的推销技术。而如何说服用户去购买,靠的不是理论,而是站在用户角度的用户体验。用户体验是一切商品销售的基本点,既然想让自己的产品被认可、就一定和用户换位思考,想想如果是自己买这东西,可以有什么用处、得到什么收获。
4、网站建设调整。
如果SEM分析是在建站前,那我们就可以有分寸地建站了。如果网站已经上线,那我们就需要结合前面得到的数据对网站进行调整。比如网站是否满足了受
众的年龄层次、学历层次,网站功能是否简捷实用,网站是否能给用户信任感、权威感。然后亲自测试网站,是否能快速精准地找到自己想要的信息。
5、搜索引擎广告。
搜索引擎广告主要分为竞价广告和主题推荐广告。竞价广告简单来说就是用竞价的形式买关键词位置,谁买词出的价高,搜索该词的时候谁就排得靠前,这种
广告都是呈现在搜索结果页面上方。而主题推荐广告往往是存在于搜索引擎联盟合作网站的广告位上。随页面的内容变化而变化,同时结合你当前浏览器的
cookies呈现相关的关键字广告。
6、软文推广。
软文推广本应写在SEO中的,不过通过软文成交的定单比比皆是。把软文发在高权重的网站上,别人不小心看到你精心准备的软文和购物经验,很可能就忍不住跟着你去购物了,哪怕你只是编的一个经验,也有机会打动小白们的。
当然,如果做广告肯定要花钱的,天下没有免费的午餐,不管在时间上还是经济上,你想挣钱就得投资。SEO是个漫长的过程,而竞价广告用金钱缩短了这
个时间,让你的网站可以第一时间被用户看到,你就不需要考虑SEO的问题了,一个烂透了被百度K到无底洞的站都可以easy地排到第一位,你该想想如何用
最少的广告费产生最多的定单了。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)