sem做数据分析时要先对比数据,通过对比发现问题,再通过收集数据来找出问题。从计划、单元再到关键词,一步一步细化数据,最后落实到具体操作上,解决问题。
1.日消费数据分析
这个日消费报表一般有日消费报表,周消费报表,月度消费报表组成。表中包含的内容有展现,点击,点击率,点击价格,对话数,有效对话数,对话率,留档数,留档成本等。
这个表主要是能直观地看到每天的数据变化,任何一个数据的变化都能很直观的看到,这能很好地掌控账户后台数据的变化。
2.计划,单元,关键词转化分析
这个主要就是看计划,单元,关键词的成本分析了,找到成本最低,数量最高的计划,单元和关键词,作为后期推广在核心部分。
而另外一部分有消费却没有留档或者成本很高又没有带来订单的,这类就需要减少消费了。
扩展资料:
sem就是基于搜索引擎平台的网络营销,利用人们对搜索引擎的依赖和使用习惯,在人们检索信息的时候将信息传递给目标用户。搜索引擎营销的基本思想是让用户发现信息,并通过点击进入网页,进一步了解所需要的信息。企业通过搜索引擎付费推广,让用户可以直接与公司客服进行交流、了解,实现交易。
搜索引擎营销的基本思想是让用户发现信息,并通过(搜索引擎)搜索点击进入网站/网页进一步了解他所需要的信息。在介绍搜索引擎策略时,一般认为,搜索引擎优化设计主要目标有2个层次:被搜索引擎收录、在搜索结果中排名靠前。这已经是常识问题,简单来说SEM所做的就是以最小的投入在搜索引擎中获最大的访问量并产生商业价值。
SEM是Search Engine Marketing的英文缩写,其中文意思就是搜索引擎营销。台湾和香港、澳门也称为搜寻销售,意思都差不多。SEM更多强调的是综合手段在搜索引擎上的企业传播和促进和销售,和SEO更多倾向于一种网站质量和欢迎度提高不同,SEM更强调结果,合理、有效稳定的方法都是可以的。一般的理解SEM由四部分工作组成
一、 竞价排名,顾名思义就是网站付费后才能被搜索引擎收录,付费越高者排名越靠前;而在国内最流行的点击付费搜索引擎有百度,雅虎和Google。值得一提的是即使是做了PPC (Pay Per Click,按照点击收费)付费广告和竞价排名,最好也应该对网站进行搜索引擎优化设计,并将网站登录到各大免费的搜索引擎中。
二、 购买关键词广告,即在搜索结果页面显示广告内容,实现高级定位投放,用户可以根据需要更换关键词,相当于在不同页面轮换投放广告;
三、 搜索引擎优化(SEO),就是通过对网站优化设计,使得网站在搜索结果中靠前。 搜索引擎优化(SEO)又包括网站内容优化、关键词优化、外部链接优化、内部链接优化、代码优化、图片优化、搜索引擎登录等.
四、 PPC( Pay Per call,按照有效通话收费 ),比如:“TMTW来电付费”,就是根据有效电话的数量进行收费。购买竞价广告也被称做PPC。百度说的P4P也就是这个意思。
目前,SEM正处于发展阶段,它将成为今后专业网站乃至电子商务发展的必经之路。
SEO是属于SEM的一部分,SEM包含了SEO。
结构方程模型(SEM)包括连续潜变量之间的回归模型(Bollen, 1989Browne &Arminger, 1995Joreskog &Sorbom, 1979)。也就是说,这些潜变量是连续的。这里需要注意的是:1. 潜变量(latent variables)是与观察变量(Observed variables)相对的,可通过数据分析观察;2. 观察变量可以是连续的(continuous)、删失的(censored)、二进制的(binary)、有序的(ordinal)、无序的(nominal)、计数的(counts),或者是这些类别的组合形式。
SEM有两个部分:一个测量模型(measurement model)和一个结构模型(structural model)。
测量模型 相当于一个多元回归模型(multivariate regression model),用于描述一组可观察的因变量和一组连续潜变量之间的关系。在此,这一组可观察的因变量被称为因子指标(factor indicators),这一组连续潜变量被称为因子(factors)。
如何描述它们之间的关系?可以通过以下方式:
1. 若因子指标是连续的,用线性回归方程(linear regression equations);
2. 若因子指标是删失的,用删失回归或膨胀删失回归方程(censored normal or censored-inflated normal regression equations);
3. 若因子指标是有序的类别变量,用profit或logistic回归方程(probit or logistic regression equations);
4. 若因子指标是无序的类别变量,用多元logistic回归方程(multinomial logistic regression equations);
5. 若因子指标是计数的,用Poisson或零膨胀Poisson回归方程(Poisson or zero-inflated Poisson regression equations)。
结构模型 则在一个多元回归方程中描述了三种变量关系:
1. 因子之间的关系;
2. 观察变量之间的关系;
3. 因子和不作为因子指标的观察变量之间的关系。
同样,这些变量有不同的种类,所以要根据它们的类别来选择合适的方程进行分析:
1. 若因子为因变量,及可观察的因变量是连续的,用线性回归方程(linear regression equations);
2. 若可观察的因变量是删失的,用删失回归或膨胀删失回归方程(censored normal or censored-inflated normal regression equations);
3. 若可观察的因变量是二进制的或者是有序的类别变量,用profit或logistic回归方程(probit or logistic regression equations);
4. 若可观察的因变量是无序的类别变量,用多元logistic回归方程(multinomial logistic regression equations);
5. 若可观察的因变量是计数的,用Poisson或零膨胀Poisson回归方程(Poisson or zero-inflated Poisson regression equations)。
在回归中,有序的类别变量可通过建立比例优势(proportional odds)模型进行说明;最大似然估计和加权最小二乘估计(maximum likelihood and weighted least squares estimators)都是可用的。
以下特殊功能也可以通过SEM实现:
1. 单个或多组分析(Single or multiple group analysis);
2. 缺失值(Missing data);
3. 复杂的调查数据(Complex survey data);
4. 使用最大似然估计分析潜变量的交互和非线性因子(Latent variable interactions and non-linear factor analysis using maximum likelihood);
5. 随机斜率(Random slopes);
6. 限制线性和非线性参数(Linear and non-linear parameter constraints);
7. 包括特定路径的间接作用(Indirect effects including specific paths);
8. 对所有输出结果的类型进行最大似然估计(Maximum likelihood estimation for all outcome types);
9. bootstrap标准误差和置信区间(Bootstrap standard errors and confidence intervals);
10. 相等参数的Wald卡方检验(Wald chi-square test of parameter equalities)。
以上功能也适用于CFA和MIMIC。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)