2、双变量空间自相关模型是指某一空间单元的某一属性值与临近空间单元上同一属性值之间存在的空间相关程度。空间自相关又分为正的空间自相关、负的空间自相关、空间无关。在区域科学分析中,正的空间自相关表明空间区域单元的属性值存在趋同集聚,即高值与高值、低值与低值之间趋于空间聚集。负的空间自相关表明空间区域单元的属性值存在趋异集聚。
3、Anselin和Rey(1991)年将空间自相关进一步分为空间实质相关(spatiallysubstativedependence)和空间扰动相关(spatiallynuisancedependence),它们都反映了空间单元属性值的非独立性。空间实质相关主要由被解释变量或解释变量的空间相关性所引起。而空间扰动相关由没有作为解释变量(有可能是遗漏解释变量或不可观测)的因素引起的,这种空间自相关归入随机干扰项中。
4、空间自相关的度量可以分为全局空间自相关(globlespatialautocorrelation)和局部空间自相关(localspatialautocorrelation)。度量全局空间自相关的统计量主要包括全局Moran'sI统计量和全局Geary'sC统计量。局部空间自相关用来刻画局域空间单元的属性值的分布特征,特别是分析聚集发生的位置。局部空间自相关由空间联系的局部指标(localindicatorsofspatialassociation,LISA),包括局部Moran'sI统计量和局部Geary'sC统计量和局部GetisG统计量。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)