二维材料具有许多突出的特性,使它们对电子器件的制造具有吸引力,如高导电性、灵活性和透明度。然而,在商业器件和电路中集成二维材料是具有挑战性的,因为它们的结构和性能在制造过程中可能会被破坏。最近的研究表明,标准的金属沉积技术(如电子束蒸发和溅射)会显著破坏二维材料的原子结构。这里表明,通过喷墨打印技术沉积金属不仅不会对超薄二维材料的原子结构产生任何可观察到的破坏,而且可以保持尖锐的界面。这些结论得到了原子模拟、透射电子显微镜、纳米化学计量学和探针台的器件表征获得的大量数据的支持。这些结果对于理解应用于二维材料的喷墨打印技术非常重要,它们可以促进更好的设计和优化电子器件和电路。
使用二维材料来构建集成电路将代表着微纳米电子领域的一场革命。然而,金属在二维材料上的沉积和溅射--这是构建电路的一个必要过程--会损害其表面,导致性能和可靠性下降。本文将为大家介绍最新发表 在Advanced Materials 主刊上题为“ Defect-Free Metal Deposition on 2D Materials via Inkjet Printing Technology ”的文章。这项工作发现,通过喷墨打印技术在二维材料上沉积金属不会产生任何缺陷,我们可以观察到完美的层状结构和清晰的界面。在器件层面,喷墨打印的器件展现出稳定的性能,这在用其他金属沉积方法制备的器件中观察不到。
这项工作详尽地分析了三种不同的金属沉积技术(电子束蒸发、溅射和喷墨打印)在机械剥离和化学气相沉积制备的 18层厚( 6纳米)氮化硼(h-BN)堆叠的形态中引入的损伤。我们选择这种材料是因为引入的损伤可能比其他任何二维层状材料有更大的影响,因为h-BN被用作电介质来阻止/调节平面外的电流,在这个方向上,原子缺陷会成倍地增加泄漏电流--也就是说,h-BN中的平面外电流将比石墨烯、MXenes和二维半导体的平面内电流更受局部缺陷影响。本文使用这个厚度是因为它与有史以来报道的一些最杰出的基于h-BN的器件所使用的厚度一致。本文的研究表明电子束沉积和溅射都会在h-BN中引入大量缺陷,尤其是化学合成的h-BN。然而,喷墨打印技术并没有在h-BN的原子结构中产生任何可观察到的损伤,通过大量的透射电子显微图像肯定了喷墨打印技术在h-BN上沉积金属不会产生任何缺陷。
图1. a,b,c) 制备过程. d1) 旋涂光刻胶保护h-BN. d2) 用机械剥离的Au电极保护h-BN. d3) 用Ag ink保护h-BN.e) 在三个样品上镀一层17 nm的Au. f,g) 三个样品的光学图像. h,i,j) 三个样品的SEM图像
本文通过机械剥离法剥离出 6nm厚、 30μm长的h-BN薄片,并将其转移在有标记的300nmSiO2/Si上(见图1a-c),以便在随后的分析中通过扫描找到位置。接着,使用三种不同的方法将h-BN薄膜的一部分保护起来:i)通过光刻一个10μm 10μm的正方形负光刻胶(图1d1),ii)通过转移Au电极(图1d2),和iii)通过喷墨打印沉积Ag墨水(图1d3)。然后, 17纳米厚的金膜通过电子束蒸发(0.52Å s-1和11%的功率)沉积在样品各处。请注意,这些参数与其他研究中经常使用的参数相似,并被认为是在材料中引入低损伤的参数。
图2. 三种保护方法和未被保护区域的TEM图对比
图2展示了每个样品的代表性截面透射电子显微镜(TEM)图像,第一行是受保护的区域,中间一行是未受保护的区域。可以看出,对于机械剥离的h-BN薄膜,受保护的h-BN区域显示出几乎完美的的层状结构,层层堆叠,层间距为0.3nm,并且顶部和底部的界面都是非常清晰和干净的。这也证明了FIB切割是使用最佳参数完成的,并且它们不会影响我们样品的形态—之前有过对不同材料的研究表明,如果选择的FIB参数不对,晶体材料会变形,本文的研究中没有这种情况。相反,h-BN的未受保护的区域显示出多个原子缺陷,特别是在顶部界面,证明了在电子束蒸发过程对h-BN堆积物的形态的不利影响。一个令人惊讶的发现是,在h-BN和SiO2衬底之间的界面也显示出在未受保护的区域有更多的缺陷,即使上面的h-BN堆栈的原始分层结构没有被破坏。如果是颗粒的穿透而导致的材料损坏,那么上层的界面也应该被破坏。这一观察也表明:i) 6纳米厚的h-BN不足以阻止蒸发的金原子穿过h-BN,以及ii)h-BN与相邻材料的界面比晶体内部结构更容易变得无序。
图3. 化学分析法对比保护和未保护区域元素分布
用光刻胶保护的样品(图3b,c)在C层(光刻胶)下方显示出非常强且均匀的N信号(来自h-BN)相反,同一样本的未保护区域(图3e,f)显示h-BN区域的N信号较弱、不连续、不均匀,表明h-BN层损伤明显。受保护样品的横截面EELS剖面(图3g)显示出接近理想的化学成分,B和N信号重叠且对称,且没有任何其他材料。相反,未受保护的区域较窄,而且O信号向h-BN堆积方向迁移(见图3h),与TEM图像(见图2d)中观察到的SiO2/h-BN(底部)界面的损伤一致。这一观察结果表明,穿透样品的Au原子向h-BN附近的O原子释放能量,促进了它们的迁移。在 其他两个样品中也观察到类似现象。
图4. 金原子进入氮化硼所需能量的计算模拟
Fernan博士基于第一原理计算模拟了Au原子进入h-BN薄膜的所需要的能量。图4a,b从两个维度展示了Au原子进入剥离的h-BN薄膜且处于不同位置的图像。对应的图4c,d为金原子沉积到取代B原子、取代N原子、占据B空位和占据N空位这一过程所需的能量。而图e,f则对应了Au原子进入无定形的h-BN薄膜所需要的能量。所有这些计算表明,在h-BN堆叠完美的二维层状结晶结构中引入Au原子是很困难的,因为需要的能量>14 eV,而且原生缺陷和悬空键(即特别是剥落样品中的界面和MOCVD样品中几个原子宽的区域)正在促进原子缺陷的聚集。由于从Au晶体中分离一个Au原子所需的最小能量(也称为内聚能)是每个原子3.81eV(368kJ mol-1),即使达到了启动蒸发所需的最小能量,如果存在固有缺陷,h-BN中在蒸发过程中仍会形成缺陷。换句话说,如果h-BN薄膜含有原生缺陷,那么在蒸发过程中形成更多的缺陷是不可避免的,与蒸发参数无关。图4a还表明,在金原子穿过一个h-BN层后,B和N原子的六边形晶格被恢复。这与观察到的以下情况是一致的,良好的内部结构加上一个受损的底部界面(见图2d-f)。
图5. 电子束沉积器件和喷墨打印器件性能比较
最后,本文研究了Ag/h-BN/Au器件作为TRNG电路的熵源的可能性。为了做到这一点,我们将带有蒸发和喷墨打印的顶部电极的器件暴露在恒压应力下,并记录随机电报噪声(RTN)的电流信号RTN。RTN是金属/绝缘体/金属结构的一个标志性的价值指标,它由观察两种电流状态之间的随机跃迁(由于介电介质中的随机电荷捕获和去捕获)组成,这使得它们能够在TRNG电路中用作熵源(如果它在一段时间内足够稳定)。我们的实验表明,使用喷墨打印的顶部Ag电极的器件容易表现出RTN,并且它在很长一段时间内是稳定的。图5g显示了部分测量的RTN特性。正如可以观察到的,这两个当前水平可以清楚地区分,这一点在加权时间滞后图5 h中更明显。因此,采用顶部Ag电极的Ag/h-BN/Au器件不仅具有更小的泄漏和击穿电流(见图5c-f),还存在额外的电子现象(即RTN),使其能够在其他应用中使用(即TRNG电路中的熵源)。
苏州大学功能纳米与软物质研究院硕士生郑雯雯为本文第一作者,阿卜杜拉国王 科技 大学的Mario Lanza教授为本文的通讯作者,阿卜杜拉国王 科技 大学的博士后Fernan Saiz为本工作提供了计算模拟支持。其他合作者包括苏州大学研究生沈雅清、刘颖文,巴塞罗那大学博士生朱凯晨,以及英国Aixtron公司的Clifford McAleese博士、Xiaochen Wang博士和Ben Conran先生。上述研究工作得到 科技 部、国家自然科学基金、财政部、国家外国专家局、苏州市 科技 局、苏州大学、苏州纳米 科技 协同创新中心、江苏省碳基功能材料与器件重点实验室、江苏省重点学科发展计划、器件重点实验室,以及江苏省高等学校重点学科建设计划、高等教育机构的优先发展项目以及阿卜杜拉国王 科技 大学等平台的支持。
论文链接:
https://onlinelibrary.wiley.com/doi/10.1002/adma.202104138
成果简介
具有高比表面积的多孔碳纳米片已经成为超级电容器最有希望的电极材料,但是它们的高孔体积导致相对较低的密度和较差的体积电容。 本文,苏州大学Chong Chen等研究人员 在《Carbon》期刊发表名为“Scalable synthesis of strutted nitrogen doped hierarchical porous carbon nanosheets for supercapacitors with both high gravimetric and volumetric performances”的论文, 研究通过新型的D-葡萄糖酸钙爆炸技术成功地按比例合成了支撑氮掺杂的分层多孔碳纳米片(SNPCNS),该碳纳米管具有通过支撑支撑的三维非聚集结构。
调节热解温度和时间,以及D-葡萄糖酸钙和脲甲醛树脂的质量比,以优化SNPCNS的比表面积,孔体积和电容性能。经过优化的SNPCNS具有高比表面积(539 m2g -1),表面杂原子丰富(N为8.1 at。%)和高密度(1.11 g cm -3)。因此,由SNPCNS电极组装的超级电容器具有非常高的重量/体积电容,分别为286Fg-1/317Fcm-3(在6MKOH中)和355Fg-1 / 394Fcm-3(在1 MH 2中)所以4)。重要的是,实现了重离子/体积能量密度(在离子液体中)为40.5 W h kg -1 /44.9 W h L -1(在离子液体中),优于先前报道的基于碳纳米片的对称超级电容器。这项工作为大规模和低成本生产用于能量存储的高性能多孔碳纳米片提供了新的策略。
图文导读
图1。氮掺杂分层多孔碳纳米片的合成示意图。
图2。SNPCNS-1:1-800-2h的(ab)SEM图像,(ce)TEM图像,(f)AFM图像和(gi)EDX元素映射图像。
图3。(a)XPS调查,(b)SNPCNS-1:1-800-2h的C1s,(c)N1s和(d)O1s光谱。
图4。SNPCNS材料通过热膨胀和热解转化制备过程的示意图。
图5。(a)20 mV s -1时的CV曲线,(b)1 A g -1时的GCD曲线,以及(c)SNPCNS样品在6 M KOH溶液中的体积电容。(d)在6 M KOH溶液中SNPCNS-1:1-800-2h的GCD曲线。(e)SNPCNS-1:1-800-2h在1 MH 2 SO 4和6 M KOH溶液中的奈奎斯特图。(f)SNPCNS-1:1-800-2h电极的重量/体积电容与其他报道的碳电极的比较。
图6。SNPCNS-1:1-800-2h在6 M KOH和[EMIm] NTf 2电解质中的电化学性能。
小结
总之,开发了一种D-葡萄糖酸钙爆炸技术,可以轻松而可规模地合成一种支链的氮掺杂分层多孔碳材料。 SNPCNS的高产量生产和出色的电容性能使其能够在超级电容器中进行大规模应用。
文献:
https://doi.org/10.1016/j.carbon.2021.04.062
▲第一作者:宋丽娜、张伟、王颖;通讯作者:徐吉静教授
通讯单位:吉林大学
论文DOI:10.1038/s41467-020-15712-z
针对锂氧气电池存在的反应动力学缓慢而导致能量转换效率低的问题,研究者通常开发高效、稳定的正极催化剂来降低电池的充电极化电压提高反应动力。该工作将Co单原子固定于掺杂N的碳球壳载体上,用于锂氧气电池的高效催化反应,实验发现Li2O2形成和分解路线与LiO2在单原子催化剂的吸附能有关。研究明确指出,在放电过程中,原子级分散的活性位点能够诱导放电产物的均匀成核和外延生长,最终形成有利的纳米花状放电产物。在充电过程中,CoN4活性中心对放电中间体LiO2弱的吸附能,诱导充电反应由两电子路径向单电子路径转变。 得益于高分散的Co-N单原子催化剂的能级结构和电子结构所发生的根本性变化,大幅提升了电池的充电效率和循环寿命。与同等含量的贵金属基催化剂相比,达到600 mV充放电极化电压的降低和218天的长寿命循环。
锂氧气电池具有锂离子电池10倍以上的理论容量密度,被誉为颠覆性和革命性电池技术 。然而该电池还处于研发的初级阶段,受限于ORR和OER电化学反应动力学缓慢,电池的实际容量、倍率性能、能量效率和循环寿命距产业化应用还有很大差距。因而开发高效稳定的催化剂,是提高电池反应动力和循环效率的迫切需要。原子级纳米晶具有最大化的原子利用效率和独特的结构特点,往往表现出不同于传统纳米催化剂的活性、选择性和稳定性,为调控电化学反应过程提供了多种可能。在锂氧电池中,电解液中可溶性LiO2中间体能够调控放电产物Li2O2的形成与分解路线。先前的研究结果表明[1],不同的生成路线与LiO2在催化剂的不同晶面上的吸附能有关。 因此,探究单原子催化剂的尺寸效应对LiO2吸附能的影响,可能是一种调整低供体数电解质中过氧化锂形成与分解路径的新思路。这一新发现将为高能量效率和长循环寿命的锂氧电池的设计提供更多的选择。
单原子催化剂(SACs)是一类非常重要的电催化剂,其独特的单分散结构集均相催化和多相催化剂的优点于一身,拥有最大的金属利用率、优异的催化活性和稳定性。同时,SACs的活性位点相对简单确定且易于调控,因而这种独特的结构和性能使得单原子催化剂成为了一个非常理想的催化机理研究和性能优化的材料平台。然而当单原子催化剂与锂空气电池相遇,会擦出怎样的火花呢?本文采用原位聚合技术,设计合成了Co单原子嵌入的氮掺杂碳空心球(N-HP-Co)用于锂氧气电池的研究,并对其充放电过程进行详细分析。其结果表明,受益于N-HP-Co最大化暴露的CoN4单原子活性位点及活性位点在碳球壳上的均匀分布,降低了对LiO2的吸附能力,有效的改变了电池的反应路径,使得电池反应动力学得到极大提高,大幅提升了电池性能。
▲图一 单原子催化剂的合成过程。
单原子催化剂由于活性位点均匀性的提高以及配位环境的高度可控性,在许多催化反应中都表现出较高的催化活性。因此将单原子Co催化剂应用于锂氧气电池中,来探究对Li2O2形成与分解反应路径的影响。我们采用原位聚合的方法,以二氧化硅作为模板,盐酸多巴胺作为碳源,并在900 °C的氮气氛围内热解。
▲图二 单原子催化剂的特性表征。a, b) 样品的SEM图像(a:1微米;b:200纳米);c) 样品的TEM图像(主图:200纳米;插图:10纳米);d) 样品的EDX元素分析(50纳米);e, f) 样品的HAADF-STEM图像(e:50纳米;f:2纳米);g) 样品及对比材料的XRD图像;h) 样品的N 1s XPS光谱;i) 样品及对比材料的氮气吸附曲线。
▲图三 单原子催化剂的原子结构分析。a) 样品的XANES光谱;b) 样品的傅里叶转换的Co-K边光谱;c, d)样品在k和R空间的EXAFS拟合曲线。
N掺杂的碳球壳作为载体是锚定Co单原子的关键步骤。高角度环形暗场球差电镜(HAADF)、能量色散谱(EDX)元素映像图表和X射线吸收光谱(XAS)测试等关键性表征技术证实了单原子Co的成功制备和CoN4高活性位点的存在。
▲图四 单原子催化剂的放电机理研究。a) 样品及对比材料的放电曲线;b) 样品及对比材料的CV曲线;c) 样品及对比材料的倍率性能;d, e, f) 样品及对比材料的放电产物的SEM图像及相应的XRD谱图(500纳米);h, i) 样品及对比材料的放电机理图。
受益于N-HP-Co SACs最大化暴露的CoN4单原子活性位点在碳球壳上的均匀分布,电极氧化还原反应动力学得到极大提升,加快了放电产物Li2O2的形成速率,大幅提升了电池的放电容量和倍率性能。与同等含量的贵金属催化剂相比,在相同的电流密度和容量下,N-HP-Co SACs具有更多的反应活性位点,因而更有利于生成纳米片状的Li2O2,并通过“外延生长方式”进一步组装形成有利的纳米花状Li2O2。这种特殊的放电机制有利于打破电荷传输限制和放电产物电化学绝缘的本质。
▲图五 单原子催化剂的充电特性。a) 样品及对比材料在不同充电阶段的紫外可见光谱图;b) 样品的充电机理图;c-h) 样品及对比材料上的不同结构对LiO2的吸附能。
为了更全面地了解CoN4单位点催化剂的充电机理,通过密度泛函理论(DFT)计算表明复杂的配位环境可以显著改变中心金属原子CoN4对LiO2*的吸附能力,从而调控反应的活性和选择性。可以看出,CoN4活性中心对放电中间体LiO2弱的吸附能,有利于提高LiO2在电解质中的溶解度,诱导充电反应过程由两电子路径向单电子路径转变。因而有利于提高电池的充电效率。
▲图六 锂空气电池的循环稳定性。a) 样品及对比材料的循环性能;b-e) 样品及对比材料在不同循环过程中放电产物的SEM图像(b, d:1微米;c, e:500纳米);f, g) 样品及对比材料在不同循环过程中的放电产物的XPS光谱。
单原子催化的锂空气电池可以有效的抑制副反应的发生,并展现出优异的循环稳定性,充分验证了催化剂对放电产物的精准调控对稳定电池体系的重要作用。
▲图七 单原子催化剂在循环过程中的稳定性。a) 样品在全圈循环后的XPS光谱;b) 样品在多圈循环后的EDX光谱(200纳米);c) 样品在多圈循环后的XANES光谱;d) 样品在多圈循环后的傅里叶转换的Co-K边光谱。
N-HP-Co 在50次的循环过程中,Co的单原子结构依然被保留。Co单原子在碳载体上的固有稳定性使它们在电化学反应中具有优异的耐久性,这一显著的优势与低成本的优势相结合,为金属单原子催化剂在锂氧电池反应路线的可调性提供了新的策略。
单原子催化剂的合成受到草莓生长过程的启发,采用二氧化硅为模板,原位聚合生成氮掺杂的Co单原子催化剂。由于单原子催化的本质特征,低配位环境和单原子与碳球壳之间的协同作用能够精准的调控锂氧气电池中放电产物的生成与分解路线。与同等含量的贵金属催化剂相比,单原子催化剂不仅能够调控放电产物的形貌,同时增加了放电容量,避免了过多的副反应的发生,极大地提高了电池的电催化性能。该研究提出的单原子催化正极的概念、设计、制备及催化机制,将为锂空气电池领域新型催化剂的发展提供新的研究思路和科学依据,具有鲜明的引领性和开创性特征。
参考文献
[1] Yao, W. T. et al. Tuning Li2O2 formation routes by facet engineering of MnO2 cathode catalysts. J. Am. Chem. Soc.,2019,141,12832-12838.
徐吉静,1981年7月出生于山东省单县,现任吉林大学,化学学院,无机合成与制备化学国家重点实验室,未来科学国际合作联合实验室,教授,博士生导师。光学晶体标准化技术委员会副秘书长。主要从事多孔新能源材料与器件领域的基础研究和技术开发工作,研究方向包括锂(钠、钾、锌)离子电池关键材料及器件,锂空气(硫、二氧化碳)电池等新型化学电源,外场(光、力、磁、热)辅助能量储存与转化新体系。近5年共发表SCI学术论文50余篇,其中包括第一作者/通讯作者论文:Nat.Commun.3篇、Nat.Energy 1篇、Angew.Chem.Int.Ed. 2篇、Adv.Mater.3篇、Energy Environ.Sci.1篇、ACS Nano 1篇、ACS Cent.Sci.1篇。迄今为止,论文被他引4000余次,单篇最高引用360次,12篇论文入选ESI高引论文,研究成果被Nature、Science等作为亮点报道。获授权发明专利和国防专利10项。曾获科睿唯安“全球高被引学者”(2019年)、吉林省拔尖创新人才(2019年)、吉林省青年 科技 奖(2018年)和吉林大学学术带头人(2018年)等奖项或荣誉。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)