Mplus中关于SEM的介绍

Mplus中关于SEM的介绍,第1张

    结构方程模型(SEM)包括连续潜变量之间的回归模型(Bollen, 1989Browne &Arminger, 1995Joreskog &Sorbom, 1979)。也就是说,这些潜变量是连续的。这里需要注意的是:1. 潜变量(latent variables)是与观察变量(Observed variables)相对的,可通过数据分析观察;2. 观察变量可以是连续的(continuous)、删失的(censored)、二进制的(binary)、有序的(ordinal)、无序的(nominal)、计数的(counts),或者是这些类别的组合形式。

    SEM有两个部分:一个测量模型(measurement model)和一个结构模型(structural model)。

     测量模型 相当于一个多元回归模型(multivariate regression model),用于描述一组可观察的因变量和一组连续潜变量之间的关系。在此,这一组可观察的因变量被称为因子指标(factor indicators),这一组连续潜变量被称为因子(factors)。

    如何描述它们之间的关系?可以通过以下方式:

1. 若因子指标是连续的,用线性回归方程(linear regression equations);

2. 若因子指标是删失的,用删失回归或膨胀删失回归方程(censored normal or censored-inflated normal regression equations);

3. 若因子指标是有序的类别变量,用profit或logistic回归方程(probit or logistic regression equations);

4. 若因子指标是无序的类别变量,用多元logistic回归方程(multinomial logistic regression equations);

5. 若因子指标是计数的,用Poisson或零膨胀Poisson回归方程(Poisson or zero-inflated Poisson regression equations)。

     结构模型 则在一个多元回归方程中描述了三种变量关系:

1. 因子之间的关系;

2. 观察变量之间的关系;

3. 因子和不作为因子指标的观察变量之间的关系。

    同样,这些变量有不同的种类,所以要根据它们的类别来选择合适的方程进行分析:

1. 若因子为因变量,及可观察的因变量是连续的,用线性回归方程(linear regression equations);

2. 若可观察的因变量是删失的,用删失回归或膨胀删失回归方程(censored normal or censored-inflated normal regression equations);

3. 若可观察的因变量是二进制的或者是有序的类别变量,用profit或logistic回归方程(probit or logistic regression equations);

4. 若可观察的因变量是无序的类别变量,用多元logistic回归方程(multinomial logistic regression equations);

5. 若可观察的因变量是计数的,用Poisson或零膨胀Poisson回归方程(Poisson or zero-inflated Poisson regression equations)。

    在回归中,有序的类别变量可通过建立比例优势(proportional odds)模型进行说明;最大似然估计和加权最小二乘估计(maximum likelihood and weighted least squares estimators)都是可用的。

    以下特殊功能也可以通过SEM实现:

1. 单个或多组分析(Single or multiple group analysis);

2. 缺失值(Missing data);

3. 复杂的调查数据(Complex survey data);

4. 使用最大似然估计分析潜变量的交互和非线性因子(Latent variable interactions and non-linear factor analysis using maximum likelihood);

5. 随机斜率(Random slopes);

6. 限制线性和非线性参数(Linear and non-linear parameter constraints);

7. 包括特定路径的间接作用(Indirect effects including specific paths);

8. 对所有输出结果的类型进行最大似然估计(Maximum likelihood estimation for all outcome types);

9. bootstrap标准误差和置信区间(Bootstrap standard errors and confidence intervals);

10. 相等参数的Wald卡方检验(Wald chi-square test of parameter equalities)。

    以上功能也适用于CFA和MIMIC。

SEM竞价推广的数据分析,分为3部分数据:

第一部分:基础推广数据,即账户后台每日的展现量、点击量、消费这个数据的跌涨情况;

第二部分:网站访客基础数据:PV、UV、IP、跳出率及平均访问时间等网站数据统计;

第三部分:行业推广平均数据对比;

第一部分是基础,只有第一部分数据点击量有效,第二部分访客质量才会提升,那么SEM竞价推广效果会有保障,第三部分数据是及时优化调整第一部分数据的有效参考。

常用的分析多用四象限法,分析方法有很多,目的都是一样。重点看下面:

关键指标维度:Ø数据分析的基础建立在营销目的上,按营销目的主要划分为三类

• 品牌知晓:主要目的提升品牌知名度

• 流量增加:主要目的给网站增加流量,带来优质访问流量

•销售促进:主要为网站带来销售业绩,销售机会

找出矛盾:• 转化成本=消费/转化量=CPC*点击量/转化量=CPC*CVR

• CPC高:降低出价,优化质量度

• CVR低:优质流量(修改匹配方式,增加否定词,暂停…),Landing Page优化,转化流程优化,促销活动,

• 转化数=点击*CVR=展示*CTR*CVR

• 展示低:修改匹配方式,扩词

• CTR低:优化创意,优化排名,过滤不精准关键词

• CVR低:优质流量(修改匹配方式,增加否定词,暂停…),Landing Page优化,转化流程优化,促销活动

希望对你有帮助。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/201651.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-04-02
下一篇2023-04-02

发表评论

登录后才能评论

评论列表(0条)

    保存