数据是我们调整账户的依据,对于一个新的竞价员来说,数据分析很难理解,因为有关键词报告、广告创意报告、搜索词报告等太多的竞价数据,一个新手往往不知从何处着手。这时候就需要静下心,对每个报告进行整理,筛选并找出有效的数据进行比较。
管理过那么多的账户,借助我们团队的经验,今天就来谈一谈该如何快速掌握SEM数据分析。
首先,你需要理解SEM数据名词含义。什么是点击率?什么是转化率?什么是跳出率?等等一系列专业术语的含义,比如账户点击率下降了,你要清楚地知道哪些因素会导致点击率下降,接下来应该如何操作;调整过账户之后,要清楚的知道哪些数据会发生变化,否则一切都是浪费时间。如下是某个教育行业投放2个月的数据案例。
繁杂的数据经过整理之后就会变得清晰明了,有经验的SEMER就会知道,上图所示的账户做了哪些调整:这组数据属于典型的营销流程的效果分析,点击量增加15.99%,同时注册量增加37.50%,注册成本降低21.82%,转化率提高18.55%,这意味着流量更加精准,竞价员对关键词的匹配方式进行了优化,加强了对有效关键词的出价优化,无效关键词的删除,添加了否定关键词等工作;点击率提高12.68%,CPC降低7.34%,由此可知竞价员对账户的框架进行整理,并添加了新的广告创意,关键词质量度有所提高,因此点击率得到提高,CPC 降低。
如上是通过时间维度对账户进行分析,这时我们应该注意要选择相对较长的时间段进行对比,这样的数据才会有意义;选择较短时间进行比较,得出的数据不准确,偶然性较强,不能反映网站投放的真实情况。有经验的SEMER还会通过不同的维度对账户进行分析,如推广计划、投放地域、关键词等维度进行分析,优化竞价账户。
如果你刚接触SEM不久,对于数据分析不要着急,也不要觉得无从下手。首先你要做的是了解SEM专业术语(微信回复“专业术语”、“思维导图”可学习),懂得它们之间的关系,然后学会整理账户数据,不要盲人摸象,或者是闭着眼睛上战场;亲自着手分析,不要被复杂的数据迷乱;最后得出优化策略,使推广工作达到事倍功半的效果。这样你很快就会成为一位出色的SEMER。
比重分析法
指通过计算某个维度所占维度总量的比例,从而去判断投放方向或投放效果。
公式:比重=某维度数值 / 总量 X 100%
倒推法
倒推法,是竞价推广中常用的一种方法,但更多被应用于战略目标的制定。
即:根据历史数据,将成交—线索—对话—点击—展现倒着进行推理的过程。
关键词四象限分析
关键词是竞价推广之根本,那么便可通过对关键词进行系统化分类,从而有针对性地进行优化。
通常,主要分为以下四类:
01 有对话成本低
像这类词,大都集中在品牌词等,且它属于优质词的一类,针对较为优秀的词可以进行放量操作
例如:加词、提价、放匹配等等。
02 有对话成本高
像这类词,主要集中在产品词和行业大词。
点击成本高,往往说明点击流量多且杂,这类情况建议有条件地放量操作,即:获取流量的同时,去控制流量的质量。
主要操作有:
加词、
优化账户结构(使账户流量结构更精准)
优化创意(利用创意筛选部分杂质流量)
03 无对话成本高
这种情况,往往都是没有集中词性,通常可根据以下两点来进行判断下一步的操作:
均价高还是低?
流量大还是小?
若流量很大,均价很低,往往通过优化页面来进行若均价很高,流量一般,便是进行降价操作若是因为流量意向低,建议进行收匹配操作。
04 效果差成本低
像这种情况,大多数都为“只点击一次就产生了对话”,我们就以为是优质词,便进行放量操作,但也有可能是意外。
营销流程表分析
通过每天罗列、收集账户中核心指标数据【消费、展现、点击、抵达、对话、线索、成交】,然后根据核心数据算出一些辅助数据,像【点击率、对话率、点击成本】等,通过将不同周期的数据进行对比,从而发现病种。
单一维度分析
指针对不同维度间的数据进行分析,从而确定优化方向。
单一维度主要可分为:产品维度、时段维度、设备维度、地区维度、关键词维度。
聚焦离子束扫描电镜双束系统(FIB-SEM)是在SEM的基础上增加了聚焦离子束镜筒的双束系统,同时具备微纳加工和成像的功能,广泛应用于科学研究和半导体芯片研发等多个领域。本文记录一下FIB-SEM在材料研究中的应用。
以目前实验室配有的FIB-SEM的型号是蔡司的Crossbeam 540为例进行如下分析,离子束最高成像分辨率为3nm,电子束最高分辨率为0.9nm。该系统的主要部件及功能如下:
1.离子束: 溅射(切割、抛光、刻蚀);刻蚀最小线宽10nm,切片最薄3nm。
2.电子束 : 成像和实时观察
3.GIS(气体注入系统): 沉积和辅助刻蚀;五种气体:Pt、W、SiO2、Au、XeF2(增强刻蚀SiO2)
4.纳米机械手: 转移样品
5.EDS: 成分定量和分布
6.EBSD : 微区晶向及晶粒分布
7.Loadlock(样品预抽室): 快速进样,进样时间只需~1min
由上述FIB-SEM的一个部件或多个部件联合使用,可以实现在材料研究中的多种应用,具体应用实例如下:
图2a和b分别是梳子形状的CdS微米线的光学显微镜和扫描电镜照片,从光学显微镜照片可以看出在CdS微米线节点处内部含有其他物质,但无法确定是什么材料和内部形貌。利用FIB-SEM在节点处定点切割截面,然后对截面成像和做EDS mapping,如图2c、d、e和f所示,可以很直观的得到在CdS微米线的节点处内部含有Sn球。
FIB-SEM制备TEM样品的常规步骤如图3所示,主要有以下几步:
1)在样品感兴趣位置沉积pt保护层
2)在感兴趣区域的两侧挖大坑,得到只有约1微米厚的薄片
3)对薄片进行U-cut,将薄片底部和一侧完全切断
4)缓慢移下纳米机械手,轻轻接触薄片悬空的一端后,沉积pt将薄片和纳米机械手焊接牢固,然后切断薄片另一侧,缓慢升起纳米机械手即可提出薄片
5)移动样品台和纳米机械手,使薄片与铜网(放置TEM样品用)轻轻接触,然后沉积pt将薄片和铜网焊接牢固,将薄片和纳米机械手连接的一端切断,移开纳米机械手,转移完成
6)最后一步为减薄和清洗,先用大加速电压离子束将薄片减薄至150nm左右,再利用低电压离子束将其减薄至最终厚度(普通TEM样品<100nm,高分辨TEM样品50nm左右,球差TEM样品<50nm)
一种如图4a所示的MoS2场效应管,需要确定实际器件中MoS2的层数及栅极(Ag纳米线)和MoS2之间的距离。利用FIB-SEM可以准确的在MoS2场效应管的沟道位置,垂直于Ag纳米线方向,提出一个薄片,并对其进行减薄,制备成截面透射样。在TEM下即可得到MoS2的层数为14层(图4c), Ag纳米线和MoS2之间的距离为30nm(图4b)。
图5是一种锰酸锂材料的STEM像,该样品是由FIB-SEM制备,图中可以看到清晰的原子像。这表明FIB-SEM制备的该球差透射样非常薄并且有很少的损伤层。
FIB-SEM还可以进行微纳图形的加工。
图6a 是FIB-SEM在Au/SiO2上制备的光栅,光栅周期为150nm,光栅开口为75nm。
图6b 是利用FIB-SEM在Mo/石英上做的切仑科夫辐射源针尖,针尖曲率半径为17nm。
图6c 是在Au膜上加工的三维对称结构蜘蛛网。
图6d 是FIB-SEM在硅上刻蚀的贺新年图案,图中最小细节尺寸仅有25nm。
FIB-SEM可以对材料进行切片式的形貌和成分三维重构,揭示材料的内部三维结构。大概过程如图7a所示, FIB切掉一定厚度的样品,SEM拍一张照片,重复此过程,连续拍上百张照片,然后将上百张切片照片重构出三维形貌。图7b是一种多孔材料内部3×5×2um范围的三维重构结果,其实验数据是利用FIB-SEM采集,三维重构是利用Avizo软件得到,其分辩率可达纳米级,展示了内部孔隙的三维空间分布,并可以计算出孔隙的半径大小、体积及曲率等参数。
利用FIB-SEM配有的纳米机械手及配合使用离子束沉积Pt,可以实现微米材料的转移,即把某种材料从一个位置(衬底)转移到特定位置(衬底),并固定牢固。图8是把四针氧化锌微米线从硅片转移到两电极的沟道之间,从而制备成两个微米线间距只有1um的特殊器件。
最后,FIB-SEM还有很多其他的应用,例如三维原子探针样品制备,芯片线路修改等。总之FIB-SEM是材料研究中一个非常重要的手段。
不积珪步,无以至千里;不积细流,无以成江海。做好每一份工作,都需要坚持不懈的学习。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)