要对细菌做SEM,前处理是什么?需要把细菌弄成干态或者固定是吗?求详细的步骤

要对细菌做SEM,前处理是什么?需要把细菌弄成干态或者固定是吗?求详细的步骤,第1张

取样,戊二醛等固定液固定,酒精梯度脱水,冷冻干燥or二氧化碳临界点干燥,喷金或蒸碳。

以上四个步骤,根据所使用的SEM成像的真空模式,可以有所省略。

如果用ESEM,取样后可直接放入样品室,在一定“环境真空”下进行观察;如果采用LV模式,直到干燥,可以免喷金;高真空模式,必须做到喷金等样品导电处理。

具体可到公益网站:中山大学生物电子显微学实验室网站查询

扫描电镜样品制备: 基础课程,生物样品因含水,其样品制备有其特殊性。

http://bioem.sysu.edu.cn/wiki/index.php/%E9%A6%96%E9%A1%B5

有时候公益网站有点那个,不好点开,请看转载链接http://coxem2010.blog.163.com/blog/static/16510375720114192413945/

1、了解业务:业务是一个泛概念,要了解业务可以围绕产品直接了解买方和卖方,任何生意都离不开买卖双方,只要两者同时存在,才会形成生意,才会产生业务。

2、数据分析:这一块同样从两方面入手,一个是行业数据调研,一个是当前SEM数据表现。

3、熟悉账户:掌握了第一步和第二步,就需要对当前的账户做充分的了解,熟悉内容主要包含账户结构、预算、账户投放地域、时间段设置、词组划分、关键词(效果监控词、展现词、流量词、否定关键词以及无效词占比)、创意以及landingpage的设置,这一步重在实践,对于从事了一段时间SEM的站长基本都可以掌握。

4、账户完善:熟悉账户之后,结合第二步中对账户做的数据分析,分析账户运作未来要提升的点,主要包含词量扩充覆盖、无效词过滤、效果词稳固、潜力词提升效果、地域有针对性调整预算比例(这一步根据实操,开多个子账户重点运作)、投放时间段调整、创意及landingpage的选择、数据监控这几部分。

5、精细化运作:这一步是对SEM效果的升级,需要花费的大量的精力去做,前提也是你对业务、账户的操作熟悉之后再进行这一步。精细化操作主要是对当前账户结果做进一步的细化,前期大量的拓词难免会不够精准的把一系列词划分到同一推广组。这里通俗点讲就是细化推广组,因为每一个推广组都是精准对应不同需求的目标人群,对于撰写创意、选择landingpage、预算分配、做数据分析以及后期稳固提升效果都是至关重要的,可以说这一步会贯穿整个SEM的运作当中,至于如何根据词类细化推广组,需要对目标人群有了清晰的认知之后才能做出决策。

6、控效果,稳步提升:以上五个步骤的最终目的都是为了转化效果,当一个账户的运作在预算的范围之内达到一定的平衡之后,会发现即使绞尽脑汁效果都不会有大幅度的提升,这个时候可以说在账户运作的各个环节都已经了然于心,对于效果的提升肯定也是有了更深层次的认知,完全可以根据任何数据的波动做出应对决策,也就是这一步所说的掌控效果。

聚焦离子束扫描电镜双束系统(FIB-SEM)是在SEM的基础上增加了聚焦离子束镜筒的双束系统,同时具备微纳加工和成像的功能,广泛应用于科学研究和半导体芯片研发等多个领域。本文记录一下FIB-SEM在材料研究中的应用。

以目前实验室配有的FIB-SEM的型号是蔡司的Crossbeam 540为例进行如下分析,离子束最高成像分辨率为3nm,电子束最高分辨率为0.9nm。该系统的主要部件及功能如下:

1.离子束: 溅射(切割、抛光、刻蚀);刻蚀最小线宽10nm,切片最薄3nm。 

2.电子束 : 成像和实时观察

3.GIS(气体注入系统): 沉积和辅助刻蚀;五种气体:Pt、W、SiO2、Au、XeF2(增强刻蚀SiO2)

4.纳米机械手:  转移样品 

5.EDS: 成分定量和分布

6.EBSD : 微区晶向及晶粒分布

7.Loadlock(样品预抽室): 快速进样,进样时间只需~1min

由上述FIB-SEM的一个部件或多个部件联合使用,可以实现在材料研究中的多种应用,具体应用实例如下:

图2a和b分别是梳子形状的CdS微米线的光学显微镜和扫描电镜照片,从光学显微镜照片可以看出在CdS微米线节点处内部含有其他物质,但无法确定是什么材料和内部形貌。利用FIB-SEM在节点处定点切割截面,然后对截面成像和做EDS mapping,如图2c、d、e和f所示,可以很直观的得到在CdS微米线的节点处内部含有Sn球。

FIB-SEM制备TEM样品的常规步骤如图3所示,主要有以下几步:

1)在样品感兴趣位置沉积pt保护层

2)在感兴趣区域的两侧挖大坑,得到只有约1微米厚的薄片

3)对薄片进行U-cut,将薄片底部和一侧完全切断

4)缓慢移下纳米机械手,轻轻接触薄片悬空的一端后,沉积pt将薄片和纳米机械手焊接牢固,然后切断薄片另一侧,缓慢升起纳米机械手即可提出薄片

5)移动样品台和纳米机械手,使薄片与铜网(放置TEM样品用)轻轻接触,然后沉积pt将薄片和铜网焊接牢固,将薄片和纳米机械手连接的一端切断,移开纳米机械手,转移完成

6)最后一步为减薄和清洗,先用大加速电压离子束将薄片减薄至150nm左右,再利用低电压离子束将其减薄至最终厚度(普通TEM样品<100nm,高分辨TEM样品50nm左右,球差TEM样品<50nm)

一种如图4a所示的MoS2场效应管,需要确定实际器件中MoS2的层数及栅极(Ag纳米线)和MoS2之间的距离。利用FIB-SEM可以准确的在MoS2场效应管的沟道位置,垂直于Ag纳米线方向,提出一个薄片,并对其进行减薄,制备成截面透射样。在TEM下即可得到MoS2的层数为14层(图4c), Ag纳米线和MoS2之间的距离为30nm(图4b)。

图5是一种锰酸锂材料的STEM像,该样品是由FIB-SEM制备,图中可以看到清晰的原子像。这表明FIB-SEM制备的该球差透射样非常薄并且有很少的损伤层。

FIB-SEM还可以进行微纳图形的加工。

图6a 是FIB-SEM在Au/SiO2上制备的光栅,光栅周期为150nm,光栅开口为75nm。

图6b 是利用FIB-SEM在Mo/石英上做的切仑科夫辐射源针尖,针尖曲率半径为17nm。

图6c 是在Au膜上加工的三维对称结构蜘蛛网。

图6d 是FIB-SEM在硅上刻蚀的贺新年图案,图中最小细节尺寸仅有25nm。

FIB-SEM可以对材料进行切片式的形貌和成分三维重构,揭示材料的内部三维结构。大概过程如图7a所示, FIB切掉一定厚度的样品,SEM拍一张照片,重复此过程,连续拍上百张照片,然后将上百张切片照片重构出三维形貌。图7b是一种多孔材料内部3×5×2um范围的三维重构结果,其实验数据是利用FIB-SEM采集,三维重构是利用Avizo软件得到,其分辩率可达纳米级,展示了内部孔隙的三维空间分布,并可以计算出孔隙的半径大小、体积及曲率等参数。

利用FIB-SEM配有的纳米机械手及配合使用离子束沉积Pt,可以实现微米材料的转移,即把某种材料从一个位置(衬底)转移到特定位置(衬底),并固定牢固。图8是把四针氧化锌微米线从硅片转移到两电极的沟道之间,从而制备成两个微米线间距只有1um的特殊器件。

最后,FIB-SEM还有很多其他的应用,例如三维原子探针样品制备,芯片线路修改等。总之FIB-SEM是材料研究中一个非常重要的手段。

不积珪步,无以至千里;不积细流,无以成江海。做好每一份工作,都需要坚持不懈的学习。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/204403.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-04-03
下一篇2023-04-03

发表评论

登录后才能评论

评论列表(0条)

    保存