R语言长时间序列栅格数据之逐像素相关性分析

R语言长时间序列栅格数据之逐像素相关性分析,第1张

假设有两组栅格数据,一组代表2019年中国每月降雨量,一组代表2019年中国每月植被叶面积指数(LAI)。想要得到中国月降水量与LAI的相关性分布,那么需要对两组栅格数据对应的栅格点进行逐栅格的相关性分析。

将降水数据导入栅格栈中,这个过程可以理解为将降水数据按时间顺序从上到下堆叠。同理,按相同的时间顺序将LAI数据堆叠。值得一提的是,stack()函数在堆叠栅格数据时是按文件名拼音和数字大小顺序自动堆叠的,具体规则可以亲自尝试。最后,将这两个栅格栈合并成一个。

对相关性分析函数稍作改变。

以上方法是可以推广的,线性回归函数lm()和相关性分析函数cor()的输入都可以是向量,因此只要函数支持向量输入,理论上讲都可以类比上述过程实现。但是如果函数只支持数据框输入,如gbm包中的函数gbm(),那就只能另辟蹊径了。

非常好学。输入几行代码,即可得到结果。

R不但数据分析好用,而且作图能力极好,推荐你用。

下面是R数据分析的一些代码,包括数据导入、方差分析、卡方测验、线性模型及其误差分析。希望可以帮到你:

1.1导入数据

install.packages('xslx')

library(xlsx)

Sys.setlocale("LC_ALL", "zh_cn.utf-8")

a=read.xlsx2('d:/1.xlsx',1,header=F)

head(a)显示前六行

class(a$y)/str(a)查看列/全集数据类型

a$y=as.numeric(a$y)转换数据类型

1.2方差分析(F test)

with(a,tapply(liqi,tan,shapiro.test))正态性检验

library(car)leveneTest(liqi~tan,a)方差齐性检验

q=aov(liqi~tan*chong,a)方差分析(正态型)

summary(q)

TukeyHSD(q)多重比较

1.3卡方测验(Pearson Chisq)

a1=summarySE(a,measurevar='y', groupvars=c('x1','x2'))卡方检验(逻辑型/计数型)

aa=a1$y

aaa=matrix(a2,ncol=2)

aaa= as.table(rbind(c(56,44), c(36,64), c(48,52),c(58,42)))

dimnames(aaa)= list(group=c("不添加抗性","不添加敏感","添加抗性","添加敏感"),effect=c("存活","死亡"))

aaa=xtabs(data=a,~x+y)

chisq.test(a)误差分析(卡方测验,Pearson法)

install.packages("rcompanion")

library(rcompanion)

pairwiseNominalIndependence(a)多重比较

1.4线性模型及其误差分析(Wald Chisq)

q=lm(data=a,y~x1*x2)一般线性模型(正态性)

summary(q)

q=glm(data=a,y~x1*x2,family = gaussian(link='identity'))广义线性模型(正态性)

summary(q)

q=glm(data=a,y~x1*x2,family = binomial(link='logit'))广义线性模型(逻辑型,二项分布)

summary(q)

q=glm(data=a,y~x1*x2,family = poisson(link='log'))广义线性模型(计数型,泊松分布)

summary(q)

install.packages('lmerTest')一般线性混合效应模型(正态性)

library(lmerTest)

install packages(‘lme4’)

library(lme4)

q=lmer(data=a,y~x1*(1|x2))

q=lmer(data=a,y~x1*(1|x2),family = gaussian(link='identity'))广义线性混合效应模型(正态性)

q=glmer(data=a,y~x1*(1|x2),family = binomial(link='logit'))广义线性混合效应模型(逻辑型,二项分布)

q=glmer(data=a,y~x1*(1|x2),family = poisson(link='log'))广义线性混合效应模型(计数型,泊松分布)

summary(q)

install.packages('car')

install.packages('openxlsx')

library(car)

install.packages('nlme')

library(nlme)

Anova(q,test='Chisq')线性模型的误差分析(似然比卡方测验,Wald法)

lsmeans(q,pairwise~chuli,adjust = "tukey")线性模型的多重比较(tukey法)


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/207062.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-04-03
下一篇2023-04-03

发表评论

登录后才能评论

评论列表(0条)

    保存