将降水数据导入栅格栈中,这个过程可以理解为将降水数据按时间顺序从上到下堆叠。同理,按相同的时间顺序将LAI数据堆叠。值得一提的是,stack()函数在堆叠栅格数据时是按文件名拼音和数字大小顺序自动堆叠的,具体规则可以亲自尝试。最后,将这两个栅格栈合并成一个。
对相关性分析函数稍作改变。
以上方法是可以推广的,线性回归函数lm()和相关性分析函数cor()的输入都可以是向量,因此只要函数支持向量输入,理论上讲都可以类比上述过程实现。但是如果函数只支持数据框输入,如gbm包中的函数gbm(),那就只能另辟蹊径了。
非常好学。输入几行代码,即可得到结果。R不但数据分析好用,而且作图能力极好,推荐你用。
下面是R数据分析的一些代码,包括数据导入、方差分析、卡方测验、线性模型及其误差分析。希望可以帮到你:
1.1导入数据
install.packages('xslx')
library(xlsx)
Sys.setlocale("LC_ALL", "zh_cn.utf-8")
a=read.xlsx2('d:/1.xlsx',1,header=F)
head(a)显示前六行
class(a$y)/str(a)查看列/全集数据类型
a$y=as.numeric(a$y)转换数据类型
1.2方差分析(F test)
with(a,tapply(liqi,tan,shapiro.test))正态性检验
library(car)leveneTest(liqi~tan,a)方差齐性检验
q=aov(liqi~tan*chong,a)方差分析(正态型)
summary(q)
TukeyHSD(q)多重比较
1.3卡方测验(Pearson Chisq)
a1=summarySE(a,measurevar='y', groupvars=c('x1','x2'))卡方检验(逻辑型/计数型)
aa=a1$y
aaa=matrix(a2,ncol=2)
aaa= as.table(rbind(c(56,44), c(36,64), c(48,52),c(58,42)))
dimnames(aaa)= list(group=c("不添加抗性","不添加敏感","添加抗性","添加敏感"),effect=c("存活","死亡"))
aaa=xtabs(data=a,~x+y)
chisq.test(a)误差分析(卡方测验,Pearson法)
install.packages("rcompanion")
library(rcompanion)
pairwiseNominalIndependence(a)多重比较
1.4线性模型及其误差分析(Wald Chisq)
q=lm(data=a,y~x1*x2)一般线性模型(正态性)
summary(q)
q=glm(data=a,y~x1*x2,family = gaussian(link='identity'))广义线性模型(正态性)
summary(q)
q=glm(data=a,y~x1*x2,family = binomial(link='logit'))广义线性模型(逻辑型,二项分布)
summary(q)
q=glm(data=a,y~x1*x2,family = poisson(link='log'))广义线性模型(计数型,泊松分布)
summary(q)
install.packages('lmerTest')一般线性混合效应模型(正态性)
library(lmerTest)
install packages(‘lme4’)
library(lme4)
q=lmer(data=a,y~x1*(1|x2))
q=lmer(data=a,y~x1*(1|x2),family = gaussian(link='identity'))广义线性混合效应模型(正态性)
q=glmer(data=a,y~x1*(1|x2),family = binomial(link='logit'))广义线性混合效应模型(逻辑型,二项分布)
q=glmer(data=a,y~x1*(1|x2),family = poisson(link='log'))广义线性混合效应模型(计数型,泊松分布)
summary(q)
install.packages('car')
install.packages('openxlsx')
library(car)
install.packages('nlme')
library(nlme)
Anova(q,test='Chisq')线性模型的误差分析(似然比卡方测验,Wald法)
lsmeans(q,pairwise~chuli,adjust = "tukey")线性模型的多重比较(tukey法)
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)