α-磷酸锆在电化学葡萄糖传感器中的应用

α-磷酸锆在电化学葡萄糖传感器中的应用,第1张

生物传感器作为一种新型的检测技术具有体积小,成本低,准确、灵敏、易操作,又不会或很少损伤样品或造成污染,可现场检测等优点,因此国内外对生物传感器展开了广泛深入的研究,且纳米材料在生物传感器中的应用也已经进入新的研究阶段。这是因为纳米材料的量子尺寸效应和表面效应可以有效地提高生物传感器的响应性能。

将α-ZrP层状材料进行剥离,剥离的α-ZrP比表面积大、表面活性中心多.以其作为插层主体,将葡萄糖氧化酶(GOx)引入到α-ZrP层间,制成了电化学葡萄糖传感器并将其应用于葡萄糖的检测中。由于α-ZrP层状材料具有良好的导电性,从而提高了生物传感器的灵敏度、稳定性及抗干扰能力。

一、实验部分

1、仪器和试剂

α-ZrP(from绵竹耀隆化工)、B-D-葡萄糖、葡萄糖氧化酶(GOx,196000unit/g)、四丁基氢氧化铵(TBAOH)、壳聚糖和二茂铁甲酸(FcCOOH)。配制三种不同的磷酸盐缓冲溶液(二茂铁甲酸):

(1)10 mmol/L PBS,pH7.0;

(2)10 mmol/L PBS,pH7.0, 1mmollL Ca2+);

(3)10 mm01/L PBS,pH7.0,1 mmol/L

实验中所用的其它试剂均为分析纯。所用水均为二次蒸馏水。所有实验均在室温下进行。

循环伏安法、差示脉冲伏安法和计时电流法均在CHI 760B型电化学工作站上室温下进行。计时电流法时,支持电解质的体积为10 mL。电化学实验采用三电极体系,修饰的玻碳(GCE,直径4 mm)电极为工作电极,Ag/AgCl电极为参比电极,铂电极为对电极。利用DOmax 2500 X—ray粉末衍射仪对样品的结构进行分析。利用JSM一5600LV显微镜进行扫描电子显微镜(SEM)分析。

2、α-ZrP的剥离和葡萄糖氧化酶的固定

首先配置2%α-ZrP的悬浊液。即将0.2g α-ZrP溶解在10 mL的二次蒸馏水中,然后加入适量的TBAOH。这样得到的悬浊液在室温下搅拌12h使α-ZrP剥离,再置于超声仪中超声40min,从而加快α-ZrP的剥离并使其能充分分散,将制得的2%α-ZrP的悬浊液和2.3 mg/mL COx溶液按照3:1的体积比进行混合.在室温下放置1 h使其达到平衡状态。反应完毕后反应液在10 000 r/min的转速下离心10 min。使游离的葡萄糖氧化酶与已经同定的葡萄糖氧化酶分离。再用二次蒸馏水进行清洗。最后将所制备的GOx/α-ZrP冻干。干燥之后可以发现。没有和GOx发生反应前,α-ZrP的粉末是白色的。当进行完以上反应过程后。得到的GOx/α-ZrP粉末变成了黄色,证明了GOx/α-ZrP的成功合成。

3、葡萄糖传感器的制备

在使用玻碳电极前,分别用1和0.05um的铝粉打磨电极,直到获得光滑的玻碳电极镜面为止。然后冲洗干净,再分别用二次蒸馏水、乙醇溶液和二次蒸馏水超声1 min。将由上面过程制得的干燥的GOx/α-ZrP粉末取1 mg溶解分散到0.5 mL二次蒸馏水中,然后取6uL的混合液滴在经过预处理的玻碳电极的表面,干燥后,再滴6uL 0.3%的壳聚糖溶液.再置于4℃冰箱中过夜自然干燥即可得到所需的生物传感器界面。在不使用时,将修饰有GOx/α-ZrP的电极置于4℃冰箱中干燥保存。

二、结果与讨论

1、α-ZrP和Gox/α-ZrP的表征

XRD作为研究晶体结构的一种重要手段。被广泛用来表征无机纳米材料。图1是GOx/α-ZrP的XRD衍射图。GOx/α-ZrP层间距的测量按Bragg定律进行计算。根据Bragg定律(从00l反射(Z=1,2, etc.))由此可以算出d=11.6 nm,即葡萄糖氧化酶的介入,使α-ZrP的层间距增大,同时可以表明葡萄糖氧化酶已经进入到α-ZrP的夹层当中。

图2是制备的GOx/α-ZrP层状材料的扫描电镜图。图2(a)为制备GOx/α-ZrP的低倍扫描电镜图。从图中可以看到制备的GOx/α-ZrP的大致形态。其薄膜表面致密并且比较均匀,这表明了GOx/α-ZrP膜的形成及其形成的层层组装的方式比较一致。图2(b)为GOr/α-ZrP的高倍扫描电镜图,从图中可以看到,层片状的GOx/α-ZrP,较均匀的排列,粒径较小,分层形成小的聚合体。

2、GOx/α-ZrP修饰电极的电化学行为

图3中曲线a是在0.1 mol/L磷酸盐缓冲溶液中(pH7.0)GOx/α-ZrP修饰电极的循环伏安曲线图。从图中可以看出GOx/α-ZrP修饰电极的循环伏安曲线没有明显的氧化还原峰,当往磷酸盐缓冲液中加入1 mmol/L二茂铁甲酸后出现一对很明显的氧化还原峰(曲线b),但当继续加入1mmol/L葡萄糖时。其循环伏安曲线发生了明显的变化(曲线C),氧化峰电流明显增大,而还原峰电流减小。这说明葡萄糖在GOx的催化作用下,发生氧化反应.使氧化还原曲线发生显著的变化。在该过程中。二茂铁甲酸只是媒介体,起着传导电子的作用.其氧化还原反应的反应机理:

在没有加人葡萄糖(曲线b)的情况下,加入二茂铁甲酸,只会发生(3)反应,(1)和(2)不发生,所以得到的是可逆的循环伏安曲线;但当在GOx存在.同时二茂铁甲酸也存在的条件下。加入葡萄糖(图3曲线c),(1)和(2)反应与(3)同时发生,由于(1)和(2)反应中发生的是得电子的过程,这与(3)中FcCOOH(ox)→FcCOOH(red)的半反应的得电子过程相竞争,使得还原峰电流减小;同时在整个反应中生成的FcCOOH red)增多,从而使得(3)的FcCOOH (red)→FcCOOH(ox)的半反应失电子增多,氧化峰电流增大。因此便得到了图3中的曲线C的氧化还原曲线图。

在固定葡萄糖的浓度为2 mmol/L的情况下,考察了不同浓度的二茂铁甲酸对GOx/α-ZrP膜修饰电极电化学行为的影响。图4是GOx/α-ZrP膜修饰的玻碳电极在10 mmol/L磷酸盐缓冲溶液(pH7.0)中加入不同浓度的二茂铁甲(浓度范围0.1~50 umol/L)的差示脉冲伏安响应曲线。从图4可以看出。随着二茂铁甲酸浓度的增大,其电流响应也随之增大,且峰位置保持不变。由此可以得出.二茂铁甲酸的浓度对GOx/α-ZrP膜修饰电极对葡萄糖的响应值有很大的影响。二茂铁甲酸的浓度越高。其响应值也就越大。由此可见,二茂铁甲酸的浓度影响了GOx/α-ZrP膜修饰电极的信号强度,同时也直接影响了传感器的检测下限.另外二茂铁甲酸的浓度与电流响应值之间存在正比例关系。综合以上结论可以得出高浓度的二茂铁甲酸对该实验是有利的。但由于二茂铁甲酸在中性条件下溶解度不高.整个实验过程采用二茂铁甲酸的浓度为1 mmol/L。

3、生物传感器的响应特性及葡萄糖的检测

图5是GO/α-ZrP膜修饰的玻碳电极对葡萄糖催化的循环伏安曲线图。从图中可以看到,当加入不同浓度的葡萄糖时。其氧化峰电流随葡萄糖浓度的增大而增大。而还原峰电流则随葡萄糖浓度的增加而不断减小氧化峰。并且氧化峰和还原峰的峰位置都不变,这是典型的电催化峰形特性。这表明了GO/α-ZrP膜修饰的玻碳电极在二茂铁甲酸存在的条件下对葡萄糖有很高的电催化活性。

图6A是GO/α-ZrP膜修饰的电极对葡萄糖响应的计时电流图,图6 B为葡萄糖传感器的标准曲线。从图中可以看到.该传感器对葡萄糖有灵敏快速的响应。在0.0l~20 mmol/L范同传感器呈良好的线性关系,相关系数为0.996,根据S/N=3的原则.可以得出检测下限为0.01mmol/L。由于传感器的线性范围覆盖了4个数量级.这表明了有大量的酶分子固定到电极表面。另外传感器对葡萄糖的灵敏度为4.74 uA/(mmol/L)。

三、结论

将α-ZrP进行剥离,通过α-ZrP与葡萄糖氧化酶的自组装,在α-ZrP层间成功地插入了葡萄糖氧化酶,再将该复合物同定到玻碳电极的表面,这样制得了的电化学葡萄糖传感器在用二茂铁甲酸作电子媒介体时对葡萄糖响应迅速,并有较宽的线性范围和较高的灵敏度。

级次结构纳米材料是由基本纳米结构单元按照一定规律构筑的一种新体系,它包括一维、二维和三维体系,体系中至少有一个维度方向处于纳米尺度范围,所以级次结构纳米材料既具备纳米颗粒的本征特性,又存在由纳米结构组合引起的耦合与协同效应,由此赋予了级次结构纳米材料一系列新颖的物理和化学性质,在磁学、光电器件、能量存储、传感和催化等领域有很广阔的应用前景,因此纳米结构材料吸引了化学家和材料学家的极大兴趣。本论文讨论了水热/溶剂热法合成了珊瑚状四氧化三铁、系列核壳结构的硫化物盒子和花状的氢氧化镍的过程,并探索了目的产物的形成机理,表征了其物理化学性质,讨论了性质与其微观结构的关系。 1.葡萄糖助溶剂热合成级次结构的四氧化三铁 在乙二醇/水的混合溶剂体系中,以七水合硫酸亚铁和氢氧化钾为原料,以葡萄糖分子及其衍生物为铁离子的稳定剂,在200℃的溶剂热条件下合成了珊瑚状的级次结构的四氧化三铁,次级结构的Fe3O4由约粒径10nm的纳米晶聚集而成,其中级次结构的根部是纳米晶颗粒无规则聚集而成的,而由根部生长的枝状结构则是定向聚集的,延长反应时间,级次结构最终解离为离散的Fe3O4纳米颗粒。研究表明在KOH碱性条件下,部分葡萄糖氧化为五碳糖、葡萄糖醛酸和葡萄糖苷等衍生物,而葡萄糖分子及其衍生物拥有的丰富羟基和羧基可与铁离子形成稳定螯合物,随着反应的进行,葡萄糖分子及其衍生物逐渐氧化降解,从而缓慢的释放铁离子形成Fe3O4纳米晶,这个过程为级次结构Fe3O4的形成提供了一个速控步,这样就在溶液中形成了一个浓度梯度,该浓度梯度振荡会导致Fe3O4纳米颗粒聚集成珊瑚状级次结构。在热流方向作用下,级次结构以扇形辐射状向外聚集生长,磁性质测试表明级次结构中颗粒间的耦合效应使Fe3O4聚集体在磁场下表现出了较强的矫顽力。 2.基于Kirkendall效应和Pearson酸碱理论合成金属硫化物纳米盒子 本章讨论了首先在Fe3+的辅助下,利用盐酸刻蚀银纳米团簇制得了作为牺牲模板的氯化银纳米方块,接下来利用溶度积效应将氯化银转化为核壳结构的硫化银纳米盒子,阴离子交换过程中伴随的Kirkendall效应造成了硫化银表面和内部空隙的形成最后利用Pearson软硬酸碱理论,以甲醇为溶剂,三丁基膦为银离子的相转移剂进行阳离子交换反应,该过程表现为局域规整反应,制得了形貌和结构的完整性保持良好的硫化镉、硫化铅、硫化锌和硫铟银。紫外-可见漫反射光谱表明,制备的硫化镉纳米盒子在可见光范围内有较好的吸收效率,这归因于硫化镉盒子特殊的核壳结构和硫化镉颗粒间的电子耦合可产生自缩小带隙。 3.超薄纳米片构成的级次花状β-Ni(OH)2的水热合成及其赝电容和气敏性能 以六水合氯化镍和六亚甲基四胺为原料,水热回流合成了超薄纳米片构成的花状β-Ni(OH)2,TEM与SEM观察发现花状结构是由中心位置向外生长了若干纳米片,纳米片边长大于500nm,XRD和HR-TEM表明纳米片厚度约9.5nm,厚度方向为[001]方向,超薄的纳米片可为离子迁移提供了非常短的扩散通道,可快速响应气体分子的吸附,利于提高样品的电化学活性或气敏性质。电化学测量表明,花状结构β-Ni(OH)2制成的电极在1A/g的电流密度下的比电容为1727F/g,增加电流密度到20A/g,样品的比电容仍然可保持到1235F/g。循环测试表明,经过1000次的充放电后,在1A/g时,其比电容只有1.6%的损耗在20A/g时,其比电容的损耗为27.9%。另外,气敏测试,表明β-Ni(OH)2制成的器件对1ppm的乙醇和丙酮依然有响应信号。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/208760.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-04-04
下一篇2023-04-04

发表评论

登录后才能评论

评论列表(0条)

    保存