sem_init函数的返回值是什么

sem_init函数的返回值是什么,第1张

返回值

sem_init() 成功时返回 0;错误时,返回 -1,并把 errno 设置为合适的值。

函数是system V 信号量操作中的函数。

sem_init() 初始化一个定位在 sem 的匿名信号量。value 参数指定信号量的初始值。 pshared 参数指明信号量是由进程内线程共享,还是由进程之间共享。如果 pshared 的值为 0,那么信号量将被进程内的线程共享,并且应该放置在这个进程的所有线程都可见的地址上(如全局变量,或者堆上动态分配的变量)。

如果 pshared 是非零值,那么信号量将在进程之间共享,并且应该定位共享内存区域(见 shm_open(3)、mmap(2) 和 shmget(2))。(因为通过 fork(2) 创建的孩子继承其父亲的内存映射,因此它也可以见到这个信号量。所有可以访问共享内存区域的进程都可以用 sem_post(3)、sem_wait(3) 等等操作信号量。初始化一个已经初始的信号量其结果未定义。

信号量是包含一个非负整数型的变量,并且带有两个原子操作wait和signal。Wait还可以被称为down、P或lock,signal还可以被称为up、V、unlock或post。在UNIX的API中(POSIX标准)用的是wait和post。

对于wait操作,如果信号量的非负整形变量S大于0,wait就将其减1,如果S等于0,wait就将调用线程阻塞;对于post操作,如果有线程在信号量上阻塞(此时S等于0),post就会解除对某个等待线程的阻塞,使其从wait中返回,如果没有线程阻塞在信号量上,post就将S加1.

由此可见,S可以被理解为一种资源的数量,信号量即是通过控制这种资源的分配来实现互斥和同步的。如果把S设为1,那么信号量即可使多线程并发运行。另外,信号量不仅允许使用者申请和释放资源,而且还允许使用者创造资源,这就赋予了信号量实现同步的功能。可见信号量的功能要比互斥量丰富许多。

POSIX信号量是一个sem_t类型的变量,但POSIX有两种信号量的实现机制: 无名信号量 命名信号量 。无名信号量只可以在共享内存的情况下,比如实现进程中各个线程之间的互斥和同步,因此无名信号量也被称作基于内存的信号量;命名信号量通常用于不共享内存的情况下,比如进程间通信。

同时,在创建信号量时,根据信号量取值的不同,POSIX信号量还可以分为:

下面是POSIX信号量函数接口:

信号量的函数都以sem_开头,线程中使用的基本信号函数有4个,他们都声明在头文件semaphore.h中,该头文件定义了用于信号量操作的sem_t类型:

【sem_init函数】:

该函数用于创建信号量,原型如下:

该函数初始化由sem指向的信号对象,设置它的共享选项,并给它一个初始的整数值。pshared控制信号量的类型,如果其值为0,就表示信号量是当前进程的局部信号量,否则信号量就可以在多个进程间共享,value为sem的初始值。

该函数调用成功返回0,失败返回-1。

【sem_destroy函数】:

该函数用于对用完的信号量进行清理,其原型如下:

成功返回0,失败返回-1。

【sem_wait函数】:

该函数用于以原子操作的方式将信号量的值减1。原子操作就是,如果两个线程企图同时给一个信号量加1或减1,它们之间不会互相干扰。其原型如下:

sem指向的对象是sem_init调用初始化的信号量。调用成功返回0,失败返回-1。

sem_trywait()则是sem_wait()的非阻塞版本,当条件不满足时(信号量为0时),该函数直接返回EAGAIN错误而不会阻塞等待。

sem_timedwait()功能与sem_wait()类似,只是在指定的abs_timeout时间内等待,超过时间则直接返回ETIMEDOUT错误。

【sem_post函数】:

该函数用于以原子操作的方式将信号量的值加1,其原型如下:

与sem_wait一样,sem指向的对象是由sem_init调用初始化的信号量。调用成功时返回0,失败返回-1。

【sem_getvalue函数】:

该函数返回当前信号量的值,通过restrict输出参数返回。如果当前信号量已经上锁(即同步对象不可用),那么返回值为0,或为负数,其绝对值就是等待该信号量解锁的线程数。

【实例1】:

【实例2】:

之所以称为命名信号量,是因为它有一个名字、一个用户ID、一个组ID和权限。这些是提供给不共享内存的那些进程使用命名信号量的接口。命名信号量的名字是一个遵守路径名构造规则的字符串。

【sem_open函数】:

该函数用于创建或打开一个命名信号量,其原型如下:

参数name是一个标识信号量的字符串。参数oflag用来确定是创建信号量还是连接已有的信号量。

oflag的参数可以为0,O_CREAT或O_EXCL:如果为0,表示打开一个已存在的信号量;如果为O_CREAT,表示如果信号量不存在就创建一个信号量,如果存在则打开被返回,此时mode和value都需要指定;如果为O_CREAT|O_EXCL,表示如果信号量存在则返回错误。

mode参数用于创建信号量时指定信号量的权限位,和open函数一样,包括:S_IRUSR、S_IWUSR、S_IRGRP、S_IWGRP、S_IROTH、S_IWOTH。

value表示创建信号量时,信号量的初始值。

【sem_close函数】:

该函数用于关闭命名信号量:

单个程序可以用sem_close函数关闭命名信号量,但是这样做并不能将信号量从系统中删除,因为命名信号量在单个程序执行之外是具有持久性的。当进程调用_exit、exit、exec或从main返回时,进程打开的命名信号量同样会被关闭。

【sem_unlink函数】:

sem_unlink函数用于在所有进程关闭了命名信号量之后,将信号量从系统中删除:

【信号量操作函数】:

与无名信号量一样,操作信号量的函数如下:

命名信号量是随内核持续的。当命名信号量创建后,即使当前没有进程打开某个信号量,它的值依然保持,直到内核重新自举或调用sem_unlink()删除该信号量。

无名信号量的持续性要根据信号量在内存中的位置确定:

很多时候信号量、互斥量和条件变量都可以在某种应用中使用,那这三者的差异有哪些呢?下面列出了这三者之间的差异:

三种专门用于线程同步的机制:POSIX信号量,互斥量和条件变量.

在Linux上信号量API有两组,一组是System V IPC信号量,即PV操作,另外就是POSIX信号量,POSIX信号量的名字都是以sem_开头.

phshared参数指定信号量的类型,若其值为0,就表示这个信号量是当前进程的局部信号量,否则该信号量可以在多个进程之间共享.value值指定信号量的初始值,一般与下面的sem_wait函数相对应.

其中比较重要的函数sem_wait函数会以原子操作的方式将信号量的值减一,如果信号量的值为零,则sem_wait将会阻塞,信号量的值可以在sem_init函数中的value初始化sem_trywait函数是sem_wait的非阻塞版本sem_post函数将以原子的操作对信号量加一,当信号量的值大于0时,其他正在调用sem_wait等待信号量的线程将被唤醒.

这些函数成功时返回0,失败则返回-1并设置errno.

生产者消费者模型:

生产者对应一个信号量:sem_t producer

消费者对应一个信号量:sem_t customer

sem_init(&producer,2)----生产者拥有资源,可以工作

sem_init(&customer,0)----消费者没有资源,阻塞

在访问公共资源前对互斥量设置(加锁),确保同一时间只有一个线程访问数据,在访问完成后再释放(解锁)互斥量.

互斥锁的运行方式:串行访问共享资源

信号量的运行方式:并行访问共享资源

互斥量用pthread_mutex_t数据类型表示,在使用互斥量之前,必须使用pthread_mutex_init函数对它进行初始化,注意,使用完毕后需调用pthread_mutex_destroy.

pthread_mutex_init用于初始化互斥锁,mutexattr用于指定互斥锁的属性,若为NULL,则表示默认属性。除了用这个函数初始化互斥所外,还可以用如下方式初始化:pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER。

pthread_mutex_destroy用于销毁互斥锁,以释放占用的内核资源,销毁一个已经加锁的互斥锁将导致不可预期的后果。

pthread_mutex_lock以原子操作给一个互斥锁加锁。如果目标互斥锁已经被加锁,则pthread_mutex_lock则被阻塞,直到该互斥锁占有者把它给解锁.

pthread_mutex_trylock和pthread_mutex_lock类似,不过它始终立即返回,而不论被操作的互斥锁是否加锁,是pthread_mutex_lock的非阻塞版本.当目标互斥锁未被加锁时,pthread_mutex_trylock进行加锁操作;否则将返回EBUSY错误码。注意:这里讨论的pthread_mutex_lock和pthread_mutex_trylock是针对普通锁而言的,对于其他类型的锁,这两个加锁函数会有不同的行为.

pthread_mutex_unlock以原子操作方式给一个互斥锁进行解锁操作。如果此时有其他线程正在等待这个互斥锁,则这些线程中的一个将获得它.

三个打印机轮流打印:

输出结果:

如果说互斥锁是用于同步线程对共享数据的访问的话,那么条件变量就是用于在线程之间同步共享数据的值.条件变量提供了一种线程之间通信的机制:当某个共享数据达到某个值时,唤醒等待这个共享数据的线程.

条件变量会在条件不满足的情况下阻塞线程.且条件变量和互斥量一起使用,允许线程以无竞争的方式等待特定的条件发生.

其中pthread_cond_broadcast函数以广播的形式唤醒所有等待目标条件变量的线程,pthread_cond_signal函数用于唤醒一个等待目标条件变量线程.但有时候我们可能需要唤醒一个固定的线程,可以通过间接的方法实现:定义一个能够唯一标识目标线程的全局变量,在唤醒等待条件变量的线程前先设置该变量为目标线程,然后采用广播的方式唤醒所有等待的线程,这些线程被唤醒之后都检查该变量以判断是否是自己.

采用条件变量+互斥锁实现生产者消费者模型:

运行结果:

阻塞队列+生产者消费者

运行结果:


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/211990.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-04-05
下一篇2023-04-05

发表评论

登录后才能评论

评论列表(0条)

    保存