SEM扫描电镜图怎么看,图上各参数都代表什么意思

SEM扫描电镜图怎么看,图上各参数都代表什么意思,第1张

1、放大率:

与普通光学显微镜不同,在SEM中,是通过控制扫描区域的大小来控制放大率的。如果需要更高的放大率,只需要扫描更小的一块面积就可以了。放大率由屏幕/照片面积除以扫描面积得到。

所以,SEM中,透镜与放大率无关。

2、场深:

在SEM中,位于焦平面上下的一小层区域内的样品点都可以得到良好的会焦而成象。这一小层的厚度称为场深,通常为几纳米厚,所以,SEM可以用于纳米级样品的三维成像。

3、作用体积:

电子束不仅仅与样品表层原子发生作用,它实际上与一定厚度范围内的样品原子发生作用,所以存在一个作用“体积”。

4、工作距离:

工作距离指从物镜到样品最高点的垂直距离。

如果增加工作距离,可以在其他条件不变的情况下获得更大的场深。如果减少工作距离,则可以在其他条件不变的情况下获得更高的分辨率。通常使用的工作距离在5毫米到10毫米之间。

5、成象:

次级电子和背散射电子可以用于成象,但后者不如前者,所以通常使用次级电子。

6、表面分析:

欧革电子、特征X射线、背散射电子的产生过程均与样品原子性质有关,所以可以用于成分分析。但由于电子束只能穿透样品表面很浅的一层(参见作用体积),所以只能用于表面分析。

表面分析以特征X射线分析最常用,所用到的探测器有两种:能谱分析仪与波谱分析仪。前者速度快但精度不高,后者非常精确,可以检测到“痕迹元素”的存在但耗时太长。

观察方法:

如果图像是规则的(具螺旋对称的活体高分子物质或结晶),则将电镜像放在光衍射计上可容易地观察图像的平行周期性。

尤其用光过滤法,即只留衍射像上有周期性的衍射斑,将其他部分遮蔽使重新衍射,则会得到背景干扰少的鲜明图像。

扩展资料:

SEM扫描电镜图的分析方法:

从干扰严重的电镜照片中找出真实图像的方法。在电镜照片中,有时因为背景干扰严重,只用肉眼观察不能判断出目的物的图像。

图像与其衍射像之间存在着数学的傅立叶变换关系,所以将电镜像用光度计扫描,使各点的浓淡数值化,将之进行傅立叶变换,便可求出衍射像〔衍射斑的强度(振幅的2乘)和其相位〕。

将其相位与从电子衍射或X射线衍射强度所得的振幅组合起来进行傅立叶变换,则会得到更鲜明的图像。此法对属于活体膜之一的紫膜等一些由二维结晶所成的材料特别适用。

扫描电镜从原理上讲就是利用聚焦得非常细的高能电子束在试样上扫描,激发出各种物理信息。通过对这些信息的接受、放大和显示成像,获得测试试样表面形貌的观察。

参考资料:百度百科-扫描电子显微镜

透射电子显微镜 1932年Ruska发明了以电子束为光源的透射电子显微镜(transmission electron microscope,TEM),电子束的波长要比可见光和紫外光短得多,并且电子束的波长与发射电子束的电压平方根成反比,也就是说电压越高波长越短。目前TEM的分辨力可达0.2nm。透射电子显微镜与光学显微镜的成像原理基本一样,所不同的是前者用电子束作光源,用电磁场作透镜。另外,由于电子束的穿透力很弱,因此用于电镜的标本须制成厚度约50nm左右的超薄切片。这种切片需要用超薄切片机(ultramicrotome)制作。电子显微镜的放大倍数最高可达近百万倍、由电子照明系统、电磁透镜成像系统、真空系统、记录系统、电源系统等5部分构成。

2.扫描电子显微镜

扫描电子显微镜(scanning electron microscope,SEM)于20世纪60年代问世,用来观察标本的表面结构。其工作原理是用一束极细的电子束扫描样品,在样品表面激发出次级电子,次级电子的多少与电子束入射角有关,也就是说与样品的表面结构有关,次级电子由探测体收集,并在那里被闪烁器转变为光信号,再经光电倍增管和放大器转变为电信号来控制荧光屏上电子束的强度,显示出与电子束同步的扫描图像。图像为立体形象,反映了标本的表面结构。为了使标本表面发射出次级电子,标本在固定、脱水后,要喷涂上一层重金属微粒,重金属在电子束的轰击下发出次级电子信号。

目前扫描电镜的分辨力为6~10nm,人眼能够区别荧光屏上两个相距0.2mm的光点,则扫描电镜的最大有效放大倍率为0.2mm/10nm=20000X。

分类: 教育/科学 >>科学技术

问题描述:

透射/超高压/高分辨/扫描透射电镜

解析:

透射电镜(tran *** ission electron microscope,TEM)透射电镜是以电子束透过样品经过聚焦与放大后所产生的物像, 投射到荧光屏上或照相底片上进行观察。因为样品物质的电子云密度不同,产生不同深浅的黑白图像。透射电镜 (TEM) 样品必须制成电子能穿透的,厚度为100~2000┱的薄膜。成像方式与光学生物显微镜相似,只是以电子透镜代替玻璃透镜。放大后的电子像在荧光屏上显示出来。图1是其光路示意图。TEM的分辨本领能达 3┱左右。在特殊情况下能更高些。

超高压电镜 即高压可达2000千伏以上,电子束可穿透约10μm厚的样品的电镜。这种电镜的基本构造和成像原理与透射电镜相似,但需要特制的真空系统和高压电气系统,还要附加特殊的操作控制系统和辐射防护装置等,使其结构较透射电镜更复杂。

超高压电镜 (HVEM) 是一种TEM,不过常用的 TEM加速电压为 100kV。只能穿透几千埃厚的样品。电子的穿透能力随β2=v2/с2(电子速度与光速之比)而增。由于相对论性效应,β2在 500kV以上增加得就很慢了。目前有200kV、300kV和1000kV的商品电镜。法国和日本有3000kV的特制电镜。HVEM除加速筒以外与一般 TEM相似,只是尺寸放大了。1000kV的电镜有两层楼高。放大尺寸后,样品周围空间增大,便于安置各种处理样品的附件,如拉伸、加热、冷却、化学反应等副件,并能把它们与倾斜样品台结合起来;还可以做动态观察,用电视记录样品处理过程中的变化。高能量的电子能造成样品中的辐射损伤,这对研究材料辐射损伤的微观机理带来极大的方便。

高分辨电镜(HREM) 提高加速电压,使电子波长更短,能提高分辨本领。由于技术上的难度高,所以至70年代初超高压电镜主要针对提高穿透率。70年代末至80年代初技术上的提高带来了200kV、300kV的高分辨商品电镜及个别500kV、600kV和1000kV的HREM。分辨本领能达2┱左右。不久将能达到1.5┱。由于生物学分子极易被辐照损伤,所以目前HREM主要用于观察无机材料中的原子排列。

扫描电镜 (SEM) 主要用于直接观察固体表面的形貌,其原理如图2所示。先利用电子透镜将一个电子束斑缩小到几十埃,用偏转系统使电子束在样品面上作光栅扫描。电子束在它所到之处激发出次级电子,经探测器收集后成为信号,调制一个同步扫描的显像管的亮度,显示出图像。样品表面上的凹凸不平使某些局部朝向次级电子探测器,另一些背向探测器。朝向探测器的部分发出的次级电子被集收得多,就显得亮,反之就显得暗,由此产生阴阳面、富有立体感的图像。像的放大倍数为显像管的扫描幅度比上样品面上电子束的扫描幅度。SEM的分辨本领比电子束斑直径略大。目前SEM的分辨本领能达60┱。

扫描透射电镜(STEM) 成像方式与扫描电镜相似,不过接收的不是次级电子而是透射电子(包括部分小角散射电子)。样品也必须是薄膜,STEM的分辨本领与电子束斑直径相当。专门的STEM用高亮度场致发射电子枪(要求10-10托的超高真空)。分辨本领能达3┱。利用这种STEM已观察到轻元素支持膜上的单个重原子。对实际工作尤为重要的是可以利用它的微小电子束斑作极微区(几十埃)的晶体结构分析(用电子衍射)和成分分析(用电子束激发的标识X 射线或者用电子能量损失谱)。目前商品TEM可以带有STEM附件,不过因为没有高亮度场致发射枪,所以只能将束斑缩到几十埃。能做约100┱范围内的结构和成分分析。能在观察显微像的同时在其任意一个微小的局部做上述分析的电镜叫“分析电镜”。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/212788.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-04-05
下一篇2023-04-05

发表评论

登录后才能评论

评论列表(0条)

    保存