R语言长时间序列栅格数据之逐像素相关性分析

R语言长时间序列栅格数据之逐像素相关性分析,第1张

假设有两组栅格数据,一组代表2019年中国每月降雨量,一组代表2019年中国每月植被叶面积指数(LAI)。想要得到中国月降水量与LAI的相关性分布,那么需要对两组栅格数据对应的栅格点进行逐栅格的相关性分析。

将降水数据导入栅格栈中,这个过程可以理解为将降水数据按时间顺序从上到下堆叠。同理,按相同的时间顺序将LAI数据堆叠。值得一提的是,stack()函数在堆叠栅格数据时是按文件名拼音和数字大小顺序自动堆叠的,具体规则可以亲自尝试。最后,将这两个栅格栈合并成一个。

对相关性分析函数稍作改变。

以上方法是可以推广的,线性回归函数lm()和相关性分析函数cor()的输入都可以是向量,因此只要函数支持向量输入,理论上讲都可以类比上述过程实现。但是如果函数只支持数据框输入,如gbm包中的函数gbm(),那就只能另辟蹊径了。

非常好学。输入几行代码,即可得到结果。

R不但数据分析好用,而且作图能力极好,推荐你用。

下面是R数据分析的一些代码,包括数据导入、方差分析、卡方测验、线性模型及其误差分析。希望可以帮到你:

1.1导入数据

install.packages('xslx')

library(xlsx)

Sys.setlocale("LC_ALL", "zh_cn.utf-8")

a=read.xlsx2('d:/1.xlsx',1,header=F)

head(a)显示前六行

class(a$y)/str(a)查看列/全集数据类型

a$y=as.numeric(a$y)转换数据类型

1.2方差分析(F test)

with(a,tapply(liqi,tan,shapiro.test))正态性检验

library(car)leveneTest(liqi~tan,a)方差齐性检验

q=aov(liqi~tan*chong,a)方差分析(正态型)

summary(q)

TukeyHSD(q)多重比较

1.3卡方测验(Pearson Chisq)

a1=summarySE(a,measurevar='y', groupvars=c('x1','x2'))卡方检验(逻辑型/计数型)

aa=a1$y

aaa=matrix(a2,ncol=2)

aaa= as.table(rbind(c(56,44), c(36,64), c(48,52),c(58,42)))

dimnames(aaa)= list(group=c("不添加抗性","不添加敏感","添加抗性","添加敏感"),effect=c("存活","死亡"))

aaa=xtabs(data=a,~x+y)

chisq.test(a)误差分析(卡方测验,Pearson法)

install.packages("rcompanion")

library(rcompanion)

pairwiseNominalIndependence(a)多重比较

1.4线性模型及其误差分析(Wald Chisq)

q=lm(data=a,y~x1*x2)一般线性模型(正态性)

summary(q)

q=glm(data=a,y~x1*x2,family = gaussian(link='identity'))广义线性模型(正态性)

summary(q)

q=glm(data=a,y~x1*x2,family = binomial(link='logit'))广义线性模型(逻辑型,二项分布)

summary(q)

q=glm(data=a,y~x1*x2,family = poisson(link='log'))广义线性模型(计数型,泊松分布)

summary(q)

install.packages('lmerTest')一般线性混合效应模型(正态性)

library(lmerTest)

install packages(‘lme4’)

library(lme4)

q=lmer(data=a,y~x1*(1|x2))

q=lmer(data=a,y~x1*(1|x2),family = gaussian(link='identity'))广义线性混合效应模型(正态性)

q=glmer(data=a,y~x1*(1|x2),family = binomial(link='logit'))广义线性混合效应模型(逻辑型,二项分布)

q=glmer(data=a,y~x1*(1|x2),family = poisson(link='log'))广义线性混合效应模型(计数型,泊松分布)

summary(q)

install.packages('car')

install.packages('openxlsx')

library(car)

install.packages('nlme')

library(nlme)

Anova(q,test='Chisq')线性模型的误差分析(似然比卡方测验,Wald法)

lsmeans(q,pairwise~chuli,adjust = "tukey")线性模型的多重比较(tukey法)

相关性分析是指对两个或多个具备相关性的变量元素进行分析,从而衡量两个变量因素的相关密切程度。相关性分析旨在研究两个或两个以上随机变量之间相互依存关系的方向和密切程度。

一般来讲研究对象(样品或处理组)之间使用距离分析,而元素(物种或环境因子)之间进行相关性分析 。两个变量之间的相关性可以用简单相关系数(例如皮尔森相关系数等)进行表示,相关系数越接近1,两个元素相关性越大,相关系数越接近0,两个元素越独立。

Pearson相关系数是用于表示相关性大小的最常用指标,数值介于-1~1之间,越接近0相关性越低,越接近-1或1相关性越高。正负号表明相关方向,正号为正相关、负号为负相关。适用于两个正态分布的连续变量。

利用两变量的秩次大小来进行分析,属于非参数统计方法。适用于不满足Pearson相关系数正态分布要求的连续变量。也可以用于有序分类变量的之间的相关性测量。

Kendall's Tau相关系数是一种非参数检验,适用于两个有序分类变量。

此外衡量两个变量之间关系的方法还有:卡方检验、Fisher精确检验等。

Pearson、Spearman、Kendall相关系数都可以通过cor函数实现,cov协方差函数参数同cor函数。

ggcorrplot包内只有2个函数,一个cor_pmat()用于计算p值,一个ggcorrplot()用于绘图。ggcorrplot相当于精简版的corrplot包,只有主题更加丰富多样。

This function computes and returns the distance matrix computed by using the specified distance measure to compute the distances between the rows of a data matrix.

这个函数用特定的方法计算矩阵的行之间的距离,并返回距离矩阵。

scale是对矩阵的每一列进行标准化,如果要对行标准化需要先转置。如 heatmapdata <- t(scale(t(heatmapdata)))


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/213813.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-04-05
下一篇2023-04-05

发表评论

登录后才能评论

评论列表(0条)

    保存