丙二醇催化脱氢反应

丙二醇催化脱氢反应,第1张

以硝酸铜、硝酸锰、硝酸铝和碳酸钠为原料,通过共沉淀法制备了不同Mn含量的Cu-Mn-Al催化剂。采用BET,XRD,SEM,TEM,H2-TPR和NH3-TPD等对催化剂进行了表征,在固定床反应器上考察了催化剂对丙二醇单甲醚直接脱氢制备甲氧基丙酮反应活性的影响。结果表明:Mn含量对Cu-Mn-Al催化剂理化性质有较大影响。适量添加Mn能够促进Cu的分散,改变催化剂还原性能,降低催化剂表面酸性。当n(Cu):n(Mn):n(Al)=2.0:3.5:1.0时,Cu-Mn-Al催化剂表面酸量低,具有较低还原温度。在反应温度260℃、常压、进料组成为含5%(质量分数)水的丙二醇单甲醚溶液、液时空速为2.5h-1的条件下,该催化剂上丙二醇单甲醚转化率可达61.57%,甲氧基丙酮选择性可达96.83%,且副产物丙酮选择性低,为1.20%。

西藏特提斯海区侏罗系—白垩系界线钙质超微化石的研究,由于受自然条件、研究方 向,以及重视程度等方面的限制,钙质超微化石的研究基础相当薄弱,多少年来几乎是一 个空白区域。主要研究工作仅局限在中、晚白垩世之后。

藏南白垩纪—古近纪钙质超微化石的工作主要是由徐钰林等(徐钰林等,1992;徐 钰林,2000)所做,建立了相应的钙质超微化石带,并与Sissingh(1977)化石分带(CC 带)进行了对比。另外,钟石兰等(2000)对西藏南部岗巴地区白垩纪中期钙质超微化 石带和Cenomanian—Turonian界线钙质超微化石进行了研究,他们研究了两个剖面 Albian—Santonian钙质超微化石的分布。根据标志种的存在,识别出5个初现面事件,相 应地建立了6个钙质超微化石带,自下而上是Prediscosphaera cretacea带、Eiffellithus turriseiffeli带、Lithraphidites acutum带、Gartnerago obliquum带、Quadrum gartneri带、 Lucianorhabdus cayeuxii带。同时,通过洲际对比,建议以G.obliquum初现面作为划分本区 Cenomanian和Turonian界线的标志。

侏罗系与白垩系界线附近钙质超微生物的研究国外已有良好成果,主要工作和成果与 DSDP和ODP工作的进程密切相关,DSDP和ODP多个站位的钻心揭示界线地层保存良好 的钙质超微化石。相对而言,我国目前在该领域的研究尚属空白,该时段钙质超微生物地 层工作尚未开展,主要原因是该时期海相地层在国内的分布非常局限;其次,与DSDP和 ODP的地层样品相比较,国内仅有的该时期海相地层往往经过了剧烈的构造隆升运动和 风化剥蚀,个体微小的超微化石极易受到破坏,从而影响识别和分类。基于这样的前提条 件,迫切需要我国地质工作者进行更为深入细致的研究。

本次工作将采自江孜地区和浪卡子县羊卓雍错南岸的J—K界线地层的页岩,以及粉 砂质页岩样品,在实验室进行了深入研究,使用了多种方法,前后持续长达两年时间,经 历了多次的失败,仅用于显微镜下观察的载玻片就制作了500多片,最终发现了较为丰富 的钙质超微化石,弥补了我国J—K界线附近钙质超微生物的空白。

4.1.4.1 分析方法

钙质超微化石因为它们个体微小、结构纤细,无论采样、处理和观察研究的方法都和 一般微体化石不同。因此,下面对其处理和观察研究的方法作比较具体的介绍。

(1)用光学显微镜观察试样的分析方法

钙质超微化石样品的处理方法十分简便而又相当特殊。因为它们质地细弱、个体微 小,不可使用剧烈的化学药品,只能依靠重力分异等方法处理。处理过程主要为散样和富 集两大步骤。

1)散样:使样品充分散开,以便析出超微化石大小的颗粒。方法是:

(1)取碎成米粒大小的新鲜样品3 ~4粒,投入水中浸泡扩散,或先加二甲苯浸湿后投 入水中。最理想的样品是硬度小,甚至用指甲就能碾碎的软岩样品。如是已固结的坚硬岩 石,则需预先碎成两块,用改锥在其断面上削、刮下相当3~4颗米粒大小样品,在研钵 中碎成粉末,再投入装有20mL水的烧杯中浸泡。

(2)如果浸泡不易扩散,可将样品在水中煮沸,或者将浸入样品的小烧杯置于超声波震动 器上震动数分钟至二三十分钟,促使扩散。为不致因超声波震动造成化石破损,以周频为 28kHz、功率为5W较为合适。如果样品因粘土含量高而不易散开,可加入少量碳酸钠煮沸。

在整个处理过程中,要特别注意处理液的酸碱度。这一方面可避免具纤细钙质骨架的 超微化石不至于在pH值偏低的液体中溶解破坏,也因碱性介质能使粘土保持分散状态而 便于处理。最有利的为pH =9.4的溶液,为此,需要在用于处理的蒸馏水中加入小苏打 (每20L水中加4g)和碳酸钠(每20L水中加3g左右),使pH值达9.4。不宜直接使用 自来水或蒸馏水。

2)富集:去掉过粗、过细的颗粒和有机物质,使超微化石富集,是样品处理过程中 的重要步骤。

在样品中加入30%的双氧水(同时加小苏打以保持介质的pH值为9.4左右),加热 1h后如深色的样品变成浅灰,说明有机质已氧化。离心,倾出上覆液体,再加入Na2CO3 清洗,然后再行离心,如此重复多次。若有机质含量不高,此项步骤可省略。过粗的颗粒 可用筛选法或沉淀法去除。筛选法为将已扩散开的样品置于孔径为0.035mm或0.04mm (即300目)的细筛上冲洗,弃去留在筛上的粗粒物,取筛下冲去的液体作进一步分析。沉淀法为把已研碎的样品在小苏打水溶液中沉淀1~2min,弃去沉淀的粗粒物,取其上面 的液体作进一步分析。进一步的富集过程,可以有不同的方法,如烧杯法、滴管法、滤纸 法等(参见Stradner et al.,1961;Hay,1977;Haq,1978;纪文荣,1981;同济大学海 洋微体古生物室,1982;郝诒纯等,1993;Bown et al.,1998;Hardenbol et al.,1998; Bornemann et al.,2003)。

本次实验工作在中国地质大学(北京)海洋学院实验室进行,利用了多种当今最新、 最通用的钙质超微化石处理、制片与观察分析方法。

首先采用了通常的涂片方法。先取少量样品(米粒大小)放在载玻片上,滴1~2滴 蒸馏水,用一次性牙签或小塑料棒涂抹均匀,在可控温电热板(hot plate)上烘干后用中 性树脂胶封片,制作成可长久保存的玻片,封片胶使用加拿大树胶(折光率1.52),再 在偏光显微镜下放大1000倍(油浸镜头下)进行观察(Backman et al.,1983)。这种方 法简单快速,仅需要微量沉积物(一般用样约1g左右),对于确定有无化石与观察化石 群落组成而言这是一种非常快捷有效的方法。

由于J—K界线地层中的钙质超微化石在丰度、分异度及保存状态等方面均不如新生 代及现代大洋沉积物中的超微化石,使用上述一般处理方法制成的薄片几乎没有发现钙质 超微化石。之后,采用了多种浓缩沉淀的富集方法。现选取其中的一种方法详述步骤 如下:

A.试样的处理与薄片的制备

(1) 取岩样并切除外表污染部分,用其新鲜面。

(2) 对软质样品,则再将干净的岩样切割成许多小粒。或用螺丝刀或小刀刮取约20mL 的岩粉装入50mL的烧杯中。

(3) 对已固结的坚硬岩石,预先碎成两块,用改锥在其断面上削、刮下一些米粒大小 样品,在研钵中碎成粉末,再装入50mL的烧杯中。

(4) 往装有岩粉的烧杯中加入大约20mL缓冲后的蒸馏水(pH =9.4),用玻璃棒充分 搅拌,做成悬浊液。

(5)对浸泡不易扩散的样品,将浸入样品的小烧杯置于小型超声波震动器(周频为 28kHz、功率为5W)上震荡5s为宜,需要时可震荡数分钟甚至20~30min,促使扩散。

(6) 将搅拌好的悬浊液静置30s后,将上清液倒入第二个烧杯中;将剩下的浊液搅拌 均匀后,静置1~2min后,将上部清液倒入第三个烧杯中,制成中部清液;剩下的底部沉 淀物即为下部浊液。

(7) 用滴管分别吸取上部清液、中部清液、下部浊液分别滴到预先准备好的载玻片上。每一种液体从上到下不同层位分别取样,轻轻滴到5个载玻片上,使悬浊液均匀展布在整 个盖玻璃上。并将此载玻片放置到常温的电热板上。

(8) 加热电热板使悬浊液干燥。注意尽可能用低温(40~50℃),经过一定加热干燥时 间,以便悬浊液中不至于产生活动粒子的强烈对流。

(9) 在载玻片的中央,滴上一滴封入剂(折光率1.52)。

(10) 把盖玻片贴在载玻片上。贴盖玻片时将盖玻片带封入剂的面朝下,轻轻地放在载 玻片的试样上,用镊子或玻璃棒轻轻按一按盖玻片,使封入剂扩展到盖玻片的整个面上,这时要注意不要使盖玻片与载玻片之间留下气泡。

(11)在常温下原封不动放置一段时间,使封入剂凝固。做成镜下鉴定用的载片,再在 载片上粘贴记有试样编号、产地等内容的标签,即制作成可长久保存的载片。

B. 镜下观察、鉴定及照相

由于钙质超微化石在正交偏光显微镜下会呈现特殊的消光现象,因此,将所有制好的 薄片在正交偏光显微镜1000倍放大倍数油浸镜头下进行观察、鉴定及照相。随机选取 600个以上视域进行钙质超微化石属种的观察与鉴定,为确保化石分类鉴定的统一性和准 确性,选择部分样品进行扫描电子显微镜(SEM)观察。

(2)用扫描电子显微镜(SEM)观察试样的分析方法

扫描电子显微镜可以直接观察到钙质超微化石的构造细节,因此,也是一种常用的分 析方法。

试样的处理首先也是采用浓缩沉淀法,将钙质超微化石富集。方法步骤与上述用光学 显微镜观察的试样处理方法(1)~(6)步相同。之后不同的是将富集的上部清液、中部清液、 下部浊液分别滴在扫描电子显微镜专用的试样载台上进行充分干燥。再将载台上干燥好的 试样,在真空中喷金后即可进行观察和照相,具体方法参阅“Calcareous Nannofossils Biostratigraphy”一书中的“Techniques”一节(Bown et al.,1998)。本次电镜扫描的喷 金、观察及照相工作分3次在中国石油勘探开发研究院实验中心和中国地质大学(北京)扫描电镜室进行。

4.1.4.2 研究区钙质超微生物

本次研究分析了位于江孜—浪卡子地区5个剖面的55个样品,就其中保存的钙质超 微化石进行了处理并制片550件,选择部分样品进行扫描电子显微镜(SEM)观察,拍得 电镜扫描照片50张,并对部分较难识别的种类进行了光学显微镜和扫描电子显微镜的对 比观察。每张薄片观察视域600个以上,钙质超微化石的丰度按照Hay(1977)和Miriam Cobianchi et al.(1997)定义的标准估计:

A=abundant:6~10种/每个视域;C=common:1~5种/每个视域;

F=few:1种/1~10个视域;R=rare:1种/11~300个视域。

本次研究在江孜甲不拉沟口剖面和甲不拉剖面的甲不拉组,以及浪卡子县林西剖面桑 秀组首次发现了钙质超微化石(图版Ⅰ),尤其是甲不拉沟口剖面数量相对丰富(表 4.3)。许多类型属于全球性分子和洲际分子,为该套地层的时代划分、对比提供了依据。与全球其他地区同时期的钙质超微生物相比,研究区的生物丰度和分异度相对较低,以椭 圆盔球石科(Ellipsagelosphaeraceae)生物群为主。

表4.3 江孜甲不拉沟口和甲不拉剖面甲不拉组钙质超微化石分布表

注:J为甲不拉沟口剖面;JF为甲不拉剖面;A示化石含量丰富;C示化石含量中等;F示化石含量少;R示化 石含量稀少(A:6-10 specimens per view;C:1-5 specimens per view;F:1 specimen in 1-10 fields of view ;R:1 specimenin 11-300 fields of view)。

(1)Ellipsagelosp haeraceae生物群特征

Ellipsagelosphaeraceae生物群的特点是颗石呈圆形、椭圆形,双盾型,盾盘上的晶粒 互相叠覆。在正交偏光显微镜下,两个盾均具干涉图像。它又可分为Watznaueria,Cyclagelosphaera,Manivitella,Ellipsagelosphaera等属。本次研究发现Watznaueria属种占优 势,其次是Cyclagelosphaera,Manivitella的属种。

经鉴定Watznaueria属包括6个种,即Watznaueria barnesae,Watznaueria fossacincta,Watznaueria ovata,Watznaueria manivitae,Watznaueria cf. manivitae,Watznaueria biporta。Cyclagelosphaera属有2个种,即Cyclagelosphaera margerelii和Cyclagelosphaera deflandrei。Manivitella属有1个种,即Manivitella pemmatoidea。

Watznaueria属,Manivitella属与Cyclagelosphaera属的主要区别在于前两者颗石盾盘呈 椭圆形,而后者呈圆形、亚圆形。Watznaueria与Manivitella的主要区别在于后者具大而空 的中央区。Watznaueria属中以Watznaueria barnesae为优势种,每张薄片中单种丰度高达 40% 以上,其次按种的数量递减的是Watznaueria fossacincta,Watznaueria ovata,Watznaueria manivitae,Watznaueria cf. manivitae,Watznaueria biporta。这符合Watznaueria barnesae是保存不好的组合中最普遍的白垩纪颗石的说法(Perch-Nielsen,1985)。

从分类学角度讲,Watznaueria属的6个种根据个体的大小来区别,Watznaueria barnesae,Watznaueria fossacincta,Watznaueria ovata根据是否具有中央孔,以及中央孔的尺 寸大小加以区别,三者中央孔的尺寸依次增大。Watznaueria manivitae个体大,与 Watznaueria barnesae和Watznaueria fossacincta容易分开。Watznaueria cf. manivitae个体也很 大,一般超过8μm,中央孔小或关闭而与Watznaueria manivitae区别,Watznaueria biporta 在中央区具有两个大的穿孔为其显著特征。Watznaueria britannica的中央区具有横向棒,据此可与上述6个种加以区别。

Cyclagelosphaera属的外形呈圆形到亚圆形,是Ellipsagelosphaeraceae科中具有双折射 远端盾的一个属,在偏光显微镜下,该属远端盾发亮,与Markalius远端盾发暗相区别。研究区发现的两个种Cyclagelosphaera margerelii和Cyclagelosphaera deflandrei容易区别,前 者个体小,在偏光显微镜下远端盾很亮,而后者个体大,在偏光显微镜下颜色发黄。

Manivitella呈椭圆形,颗石的边缘区有两层环圈组成,其显著特征是中央区为大而中 空的开孔。

研究区的生物分异度相对较低,从生态环境上,常被看做典型的不稳定条件和富营养 的冷表层水(Okada et al.,1973;Brand,1994;Melinte et al.,2001 )。Watznaueria barnesae为优势种,在整个白垩纪大部分环境中常见且丰富,已被证实是一个非常抗溶的 广适性世界种,该种是精力充沛的生态型种,能尽快适应新的生境(Mutterlose,1991 ; Melinte et al.,2001)。另外,Watznaueria barnesae占优势,常被看做是叠加成岩的标志 (Roth,1986;Roth et al.,1986)。

(2)早白垩世钙质超微生物组合的层位分布和时代

A. 甲不拉组

江孜地区甲不拉沟口剖面甲不拉组底部灰色—深灰色页岩及粉砂质页岩中产丰富的钙 质超微化石Speetonia colligata,Calcicalathina oblongata,Watznaueria barnesae,Watznaueria fossacincta,Watznaueria manivitae,Watznaueria cf. manivitae,Watznaueria biporta,Watznaueria ovata,Cyclagelosphaera margerelii,Cyclagelosphaera deflandrei,Hexalithus noeliae,Hexalithus magharensis,Polycostella senaria,Biscutum constans,Manivitella pemmatoidea,Nannoconus steinmannii steinmannii,N. steinmannii minor;其中Watznaueria barnesae,Watznaueria fossacincta,Watznaueria ovata,Watznaueria manivitae,Watznaueria cf. manivitae,Cyclagelosphaera margerelii,Biscutum constans,Manivitella pemmatoidea,Diazomatolithus lehmanii等为世界种。Cyclagelosphaera deflandrei,Speetonia colligate,Calcicalathina oblongata,Hexalithus noeliae,Hexalithus magharensis,Polycostella senaria,N. steinmannii steinmannii,N. steinmannii minor等为特提斯种。

世界种相对丰富,Watznaueria属种占优势,每张薄片中Watznaueria属种的丰度高达 60%~90%以上,其次是其他属种,依次是Cyclagelosphaera margerelii,Biscutum constans,Manivitella pemmatoidea。Manivitella pemmatoidea出现的时代是Berriasian—Cenomanian期,Biscutum constans出现于白垩纪,Watznaueria与Cyclagelosphaera两属种时间跨度大,但常 被认为是晚侏罗世—早白垩世低纬度组合中的典型种。Bown et al.(1998)认为 Watznaueria britannica在晚侏罗世Tithonian期是优势种,在早白垩世时,Watznaueria属仍 占优势,但Watznaueria britannica常被Watznaueria barnesae和Watznaueria fossacincta取代。经仔细鉴定,本研究区没有发现Watznaueria britannica,而富含Watznaueria barnesae和 Watznaueria fossacincta等种,说明该区所处时代为早白垩世。

特提斯种数量相对较少,但它们多具有地层意义。Nannoconus steinmannii minor和 N.steinmannii steinmannii是早白垩世Berriasian期的标准带化石,但在本研究区的数量稀 少,丰度极低。Cyclagelosphaera deflandrei为特提斯海区特有的种,主要发现于早白垩世 早期的沉积物中(Perch-Nielsen,1985)。Polycostella senaria为早白垩世Berriasian的化石,Gartner(1977)认为Polycostella senaria为近海沉积物中鉴别Berriasian的极佳指示化石。Speetonia colligata为Berriasian—Hauterivian晚期的化石,Calcicalathina oblongata为 Valanginian早期至Hauterivian早期的化石。Hexalithus noeliae,Hexalithus magharensis出现 于白垩世。

甲不拉剖面的甲不拉组下部(2~4层)钙质超微化石的丰度和分异度远远低于甲不 拉沟口剖面,产Watznaueria barnesae,Watznaueria fossacincta,Watznaueria cf. manivitae,Watznaueria biporta,Cyclagelosphaera margerelii,Cyclagelosphaera deflandrei,Biscutum constans,Polycostella senaria,Manivitella pemmatoidea,Diazomatolithus lehmanii,Calcicalathina oblongata等。本剖面没有发现超微锥石类钙质超微化石(nannoconids),这 主要是因为甲不拉组下部多出露黑色页岩。从古生态角度讲,大多数黑色页岩中缺乏这种 超微锥石类钙质超微化石,但在远洋碳酸盐中该类化石却占优势,已被很多学者认为是贫 营养的生态型(Coccioni et al.,1992;Erba,1994)。

浪卡子县林西剖面甲不拉组下部页岩、粉砂岩中含少量的钙质超微化石Watznaueria barnesae,Tubodiscus verenae,Manivitella pemmatoidea。其中Manivitella pemmatoidea是早白 垩世Berriasian期至晚白垩世Cenomanian期的化石,Tubodiscus verenae为早白垩世 Valanginian期,因此,该区甲不拉组下部时代是早白垩世。

综合分析江孜和浪卡子地区甲不拉组下部化石,可看出化石的时代具有过渡性色彩,既有 侏罗纪延续下来的分子,也有白垩纪成员,但主要仍反映了早白垩世化石组合的面貌,时代为 早白垩世Berriasian期至Valanginian期,该化石组合相当于Sissingh(1977)化石分带CC1~ CC3带下部,以及Hardenbol et al.(1998)化石分带NJK-D至NK-3带(图4.3;表4.4)。

表4.4 西藏南部与其他地区钙质超微化石组合(带)对比表

B. 桑秀组

浪卡子县林西剖面桑秀组下部页岩中含少量的钙质超微化石Calcicalathina oblongata,Speetonia colligata,Diazomatolithus lehmanii,Polycostella senaria,Watznaueria barnesae 。化 石的丰度和分异度远远低于江孜地区甲不拉组,属种与甲不拉组部分化石相同,据上述分 析可知,此桑秀组底部与甲不拉组底部时代相同,为早白垩世Berriasian—Valanginian期,相当于Sissingh(1977)化石分带CC1~CC3带下部,以及Hardenbol et al.(1998)化石 分带NJK-D至NK-3带(图4.3;表4.4)。

本次在浪卡子县卡东剖面采得样品13块,共制成薄片130张,经仔细鉴定,桑秀组 及甲不拉组下部均没有发现钙质超微化石,这可能是因为卡东剖面桑秀组下部及甲不拉组 下部出露的多是黑色页岩,古海洋环境不利于钙质超微生物生存的缘故。

综上所述,经过仔细地分析研究,以及与同期世界其他区域的钙质超微化石组合 (带)对比,研究区甲不拉组下部和桑秀组下部钙质超微化石组合时代属于早白垩世 Berriasian—Valanginian期,相当于特提斯海区Sissingh(1977)化石分带CC1~CC3带下 部,以及Hardenbol et al.(1998)化石分带NJK-D至NK-3带(表4.4)。

氧化锌纳米材料的制备、性能、表征及应用综述

杨波

(专业:无机非金属材料工程 班级:化材1101 学号201144049) 摘要:纳米材料以其独特的结构与性能受到世人广泛的关注;本文简要介绍了纳米氧化锌材料的最新制备方法、分析表征方法、主要性质、应用、生物毒性、未来研究方向及展望。

关键词:纳米材料;氧化锌;制备;生物毒性;研究方向

1、前言

纳米Zn0 是一种新型高功能精细无机产品,与普通 ZnO 相比,因其特有的表面效应、体积效应、量子效应和介电限域效应等,在催化、光学、磁性和力学等方面展现出许多特异功能,特别是它的防紫外辐射及其在紫外区对有机物的催化降解作用,使其在陶瓷、化工、电子、光学、生物、医药等很多领域具有重要的应用ZnO 有纳米管、纳米棒、纳米丝和纳米同轴电缆、纳米带、纳米环、纳米笼、纳米螺旋及其超晶格结构等多种纳米形态,是纳米材料家族中结构最多样的成员之一。

本文主要评述了近年来氧化锌纳米材料制备的一些新方法,比较了各种方法的优缺点;介绍了氧化锌纳米材料的性质及其可能的应用领域,并对氧化锌纳米材料的发展前景进行了展望。

2、氧化锌纳米材料制备的新方法

对纳米材料的研究首先是侧重于制备方法的研究,随着研究的不断深入,近年来, 人们已开发了一系列制备氧化锌纳米材料的新方法, 如微波法、静电纺丝法、离子液体法、脉冲激光烧蚀沉积法、频磁控溅射法、等,下面将对其一一介绍。

2.1、静电纺丝法

静电纺丝是一种制备纳米纤维的技术, 这种方法可以十分经济地制得直径为纳米级的连续不断的纤维。近年来,由于对纳米科技研究的迅速升温,静电纺丝这种可大规模制备纳米尺寸纤维的纺丝技术激起了人们的广泛兴趣。

典型的静电纺丝装置见图 1,装置一般由三个部分组成:高压直流或交流电源、电纺丝喷嘴、接收电极。聚合物溶液或熔体与高压电源通过导线相连, 接收板接地,当高压电施加于聚合物溶液或熔体时,位于针头顶端的液滴表面强电场作用下,将带有大量的诱导电荷,液滴在其表面电荷的排斥力和外部电场的库仑作用力下,变形成泰勒锥状,当电场强度达到某一临界值时,静电力将克服溶液的表面张力,液体流将从泰勒锥顶端喷射而出,在射流运动一段距离后,裂分为许多小的聚合物流。在此过程中,由于受到连续的电场拉伸作用力和溶剂挥发的影响,从而在接收板上得到无纺布状纳米纤维。

静电纺丝技术对溶液粘度的要求非常严格,所以过去仅被限制于用有机高聚物来制备纳米纤维。最近,人们发现溶胶-凝胶法配制成的溶液作为前驱体也能很

好地满足静电纺丝所要求的粘度,因而电纺丝制备无机氧化物纳米纤维也就成了可能。

制备 ZnO 纳米纤维的过程主要包括三个步骤:

(1)配制合适浓度的聚合物/锌盐的前驱溶液;

(2)通过静电纺制备出聚合物/锌盐的复合纳米纤维;

(3)对复合纤维进行煅烧, 最终得到 ZnO 纳米纤维。

目前,我校(大连理工大学)王刚老师及其团队成功运用此技术合成了一系列复合纳米材料纤维。

同其他方法相比,静电纺丝技术是能够制备长尺寸的、直径分布均匀的、成分多样化的氧化锌纳米纤维的最简单的方法,且具有设备简单、操作容易以及高效等优点,因此激起了人们的广泛兴趣。

但静电纺丝法制备氧化锌纳米纤维的文献较少,其主要的不足之处表现在溶剂的挥发性不好,纤维之间有粘连现象等方面,故有待于进一步研究改进。

2.2、微波法

微波是频率 300MHz ~300GHz 、波长 1mm ~1m 的电磁波。

1986 年,Gedye R 等在微波炉内进行了酯化、水解等化学反应。此后,微波技术便逐渐渗透应用于化学的各个领域。近年来,微波技术大量应用于材料化学和催化化学领域[18],日益显示其独特优势。利用微波制备纳米材料,起步虽晚但进展迅速,国内外已有不少这方面的文献报道。

例如Hu H x 等应用微波液相合成连接型 ZnO 晶体棒产率大于 90%,合成过程不需要晶种、表面活性剂和模板剂等。该方法具有快速简单、成本低廉、节能高效等特点,适合规模化生产。李轶等用微波加热水解法制得花形结构的 ZnO 纳米粒子;余磊等以硫酸锌和碳酸钠为原料,采用微波诱导固相化学反应首先合成前驱体碳酸锌,再经热分解后纯化制得平均粒径 5.6nm 的 ZnO 。该法具有原料来源广、成本低廉、实验设备简单、工艺流程短、反应时间短、操作方便和易于分散等优点,具有实用价值。

微波法具有常规方法无法比拟的快速、节能和环保等优点,所制备的材料具有某些特殊的结构和性能。微波作为特殊的电磁复合能量场,在制备 ZnO 材料的过程中除了均匀、迅速的热效应外,非热效应的作用机理有待于进一步研究和探

讨。另外,微波制备 ZnO 要用于工业化生产还有许多技术问题需要解决。

2.3离子液体法

离子液体法是采用离子液体作为反应溶剂来制备纳米材料。

此法也表现出许多其他方法不具备的优点。Wang W W 等应用离子液体法在离子液体BF4中通过控制适当的条件,成功合成形状可控的针状和花状的 ZnO 材料。合成快速(5~20)min ,也不需要晶种、表面活性剂和模板剂等。

但这种方法还是一个比较新的方法,尚待进一步完善,如:离子液体制备纳米材料时,离子液体的制备时间较长且易受到杂质的污染;此外,离子液体的获得不如水或常用的有机溶剂方便,这也限制了它的广泛使用。

2.4脉冲激光烧蚀沉积法

日本的 Okada 等运用脉冲激光烧蚀沉积法成功合成了 ZnO 的纳米棒。

他们将纯度为 99.99%ZnO 目标物在 KrF 激光下消融,然后在载气 (O2/He) 气氛下保持一定的温度进行反应,最终在A12O3底物上成功获得了尺寸为 120nm 的 ZnO 纳米棒。

该法制备纳米粒子无需经过干燥的过程、工艺简单、团聚少,不需其他处理即可获得干燥粉体。但由于反应温度较高,需要装置具有承受高温或高压的能力,所以设备比较昂贵。

2.5频磁控溅射法

Kim 等使用 Si 作为衬底,Zn 作为靶材料在一定条件下溅射,首先得到了 Zn 的纳米线,经过氧化进一步得到了形貌规整、分布均匀的 ZnO 纳米线。

使用该制备方法获得的 ZnO 无论是结晶质量还是光学性能都很突出。与目前广泛采用的气液固催化机制制备 ZnO 低维纳米材料相比,射频磁控溅射法的设备更为简单,还可克服气液固催化生长所固有的杂质污染产物的缺点。

但射频磁控溅射法需在高温下进行,对于设备的要求较高,过程难以控制。 除了以上五个相对前沿的方法之外,合成氧化锌纳米材料的方法还包括真空蒸汽冷凝法、球磨法、热爆法、微/乳液法、脉冲激光沉积法(PLD )、喷雾热解法、模板法等,这几种方法均可以得到纯度高,粒径和形貌可控的氧化锌纳米材料,但是制备工艺复杂,抑或是设备比较昂贵。因此,无论是哪一种合成方法都还需要进一步的摸索和完善。

3、纳米材料的表征

详尽的分析表征对于研制纳米材料极其重要,关系到制备材料是否具备设定的性质,是否适合相关应用等。同时,分析表征对进行纳米材料生物效应和毒性研究也非常重要,只有掌控完全细致的表征,才能对最后的实验结果进行合理的分析。

对纳米材料的分析表征并不是一种技术就可以完成的,需要多种分析表征技术综合运用,才能对材料的性质等给出一个完整的结论。常用的分析表征方法如下:

3.1 扫描电子显微镜

扫描电子显微镜(SEM )是研究材料最常用的仪器设备。功能包括固体材料的断口,表面形貌的观察研究,材料的物相分析、成分分析以及材料表面微区成分

的定性与定量分析等,目前已经成为不可或缺的表征手段。

所以利用SEM 我们可以获得ZnO 纳米材料颗粒的形貌,尺寸,微区元素分析等信息。

3.2 透射电子显微镜

透射电子显微镜(TEM )的成像与透射光学显微镜的十分相似,只是以电子束代替了可见光,以电磁透镜代替了光学透镜。通过TEM 我们可以对样品进行一般形貌观察,获得纳米材料的粒度分布,也可利用电子衍射,选区电子衍射、会聚束电子衍射等技术对样品进行分析,从而获得材料的物相、晶系等,还可以利用衍射和高分辨率电子显微技术,观察晶体中存在的结构缺陷,确定缺陷的种类,估算缺陷密度。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/217581.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-04-06
下一篇2023-04-06

发表评论

登录后才能评论

评论列表(0条)

    保存