如何理解分形的维度?

如何理解分形的维度?,第1张

理解分形的维度:分形维数实际上相当于是一个尺子的标记,而这个尺子的适用范围比较广,不仅仅是用来求长度。分形维数另外一方面也是一个标准,就是说明这个几何图形的变化情况。

分形维数的诞生,告诉了我们自然世界并不是简单的欧几里德维数空间,而是还有更大的非欧几何。同时,有的人说分形几何是自然界的几何,也一定程度上说明了分形几何的维数是一个衡量自然界的图形的变化情况的标准。

原则

线性分形又称为自相似分形。自相似原则和迭代生成原则是分形理论的重要原则。它表征分形在通常的几何变换下具有不变性,即标度无关性。

由自相似性是从不同尺度的对称出发,也就意味着递归。分形形体中的自相似性可以是完全相同,也可以是统计意义上的相似。标准的自相似分形是数学上的抽象,迭代生成无限精细的结构,如科赫曲线(Koch snowflake)、谢尔宾斯基地毯(Sierpinski carpet)等。

分维,又称分形维或分数维,作为分形的定量表征和基本参数,是分形理论的又一重要原则。长期以来人们习惯于将点定义为零维,直线为一维,平面为二维,空间为三维,爱因斯坦在相对论中引入时间维,就形成四维时空。对某一问题给予多方面的考虑,可建立高维空间,但都是整数维。在数学上,把欧氏空间的几何对象连续地拉伸、压缩、扭曲,维数也不变,这就是拓扑维数。然而,这种传统的维数观受到了挑战。曼德布罗特曾描述过一个绳球的维数:从很远的距离观察这个绳球,可看作一点(零维);从较近的距离观察,它充满了一个球形空间(三维);再近一些,就看到了绳子(一维);再向微观深入,绳子又变成了三维的柱,三维的柱又可分解成一维的纤维。那么,介于这些观察点之间的中间状态又如何呢?

显然,并没有绳球从三维对象变成一维对象的确切界限。数学家豪斯道夫(Hausdorff)在1919年提出了连续空间的概念,也就是空间维数是可以连续变化的,它可以是自然数,也可以是正有理数或正无理数,称为豪斯道夫维数。记作Df,一般的表达式为:K=L^Df,也作K=(1/L)^(-Df),取自然对数并整理得Df=lnK/lnL,其中L为某客体沿其每个独立方向皆扩大的倍数,K为得到的新客体是原客体的倍数。Df在一般情况下不一定是自然数。因此,曼德布罗特也把分形定义为豪斯道夫维数大于或等于拓扑维数的集合。英国的海岸线为什么测不准?因为欧氏一维测度与海岸线的维数不一致。根据曼德布罗特的计算,英国海岸线的维数为1.26。有了分维,海岸线的长度就确定了。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/220189.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-04-06
下一篇2023-04-06

发表评论

登录后才能评论

评论列表(0条)

    保存