线程的最大特点是资源的共享性,但资源共享中的同步问题是多线程编程的难点。linux下提供了多种方式来处理线程同步,最常用的是互斥锁、条件变量和信号量。
1)互斥锁(mutex)
通过锁机制实现线程间的同步。同一时刻只允许一个线程执行一个关键部分的代码。
int pthread_mutex_init(pthread_mutex_t *mutex,const pthread_mutex_attr_t *mutexattr)
int pthread_mutex_lock(pthread_mutex *mutex)
int pthread_mutex_destroy(pthread_mutex *mutex)
int pthread_mutex_unlock(pthread_mutex *
(1)先初始化锁init()或静态赋值pthread_mutex_t mutex=PTHREAD_MUTEX_INITIALIER
attr_t有:
PTHREAD_MUTEX_TIMED_NP:其余线程等待队列
PTHREAD_MUTEX_RECURSIVE_NP:嵌套锁,允许线程多次加锁,不同线程,解锁后重新竞争
PTHREAD_MUTEX_ERRORCHECK_NP:检错,与一同,线程请求已用锁,返回EDEADLK
PTHREAD_MUTEX_ADAPTIVE_NP:适应锁,解锁后重新竞争
(2)加锁,lock,trylock,lock阻塞等待锁,trylock立即返回EBUSY
(3)解锁,unlock需满足是加锁状态,且由加锁线程解锁
(4)清除锁,destroy(此时锁必需unlock,否则返回EBUSY,//Linux下互斥锁不占用内存资源
示例代码
#include <cstdio>
#include <cstdlib>
#include <unistd.h>
#include <pthread.h>
#include "iostream"
using namespace std
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER
int tmp
void* thread(void *arg)
{
cout <<"thread id is " <<pthread_self() <<endl
pthread_mutex_lock(&mutex)
tmp = 12
cout <<"Now a is " <<tmp <<endl
pthread_mutex_unlock(&mutex)
return NULL
}
int main()
{
pthread_t id
cout <<"main thread id is " <<pthread_self() <<endl
tmp = 3
cout <<"In main func tmp = " <<tmp <<endl
if (!pthread_create(&id, NULL, thread, NULL))
{
cout <<"Create thread success!" <<endl
}
else
{
cout <<"Create thread failed!" <<endl
}
pthread_join(id, NULL)
pthread_mutex_destroy(&mutex)
return 0
}
编译: g++ -o thread testthread.cpp -lpthread
说明:pthread库不是Linux系统默认的库,连接时需要使用静态库libpthread.a,所以在使用pthread_create()创建线程,以及调用pthread_atfork()函数建立fork处理程序时,需要链接该库。在编译中要加 -lpthread参数。
2)条件变量(cond)
利用线程间共享的全局变量进行同步的一种机制。条件变量上的基本操作有:触发条件(当条件变为 true 时);等待条件,挂起线程直到其他线程触发条件。
int pthread_cond_init(pthread_cond_t *cond,pthread_condattr_t *cond_attr)
int pthread_cond_wait(pthread_cond_t *cond,pthread_mutex_t *mutex)
int pthread_cond_timewait(pthread_cond_t *cond,pthread_mutex *mutex,const timespec *abstime)
int pthread_cond_destroy(pthread_cond_t *cond)
int pthread_cond_signal(pthread_cond_t *cond)
int pthread_cond_broadcast(pthread_cond_t *cond) //解除所有线程的阻塞
(1)初始化.init()或者pthread_cond_t cond=PTHREAD_COND_INITIALIER(前者为动态初始化,后者为静态初始化)属性置为NULL
(2)等待条件成立.pthread_wait,pthread_timewait.wait()释放锁,并阻塞等待条件变量为真,timewait()设置等待时间,仍未signal,返回ETIMEOUT(加锁保证只有一个线程wait)
(3)激活条件变量:pthread_cond_signal,pthread_cond_broadcast(激活所有等待线程)
(4)清除条件变量:destroy无线程等待,否则返回EBUSY
对于
int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex)
int pthread_cond_timedwait(pthread_cond_t *cond, pthread_mutex_t *mutex, const struct timespec *abstime)
一定要在mutex的锁定区域内使用。
如果要正确的使用pthread_mutex_lock与pthread_mutex_unlock,请参考
pthread_cleanup_push和pthread_cleanup_pop宏,它能够在线程被cancel的时候正确的释放mutex!
另外,posix1标准说,pthread_cond_signal与pthread_cond_broadcast无需考虑调用线程是否是mutex的拥有者,也就是说,可以在lock与unlock以外的区域调用。如果我们对调用行为不关心,那么请在lock区域之外调用吧。
说明:
(1)pthread_cond_wait 自动解锁互斥量(如同执行了pthread_unlock_mutex),并等待条件变量触发。这时线程挂起,不占用CPU时间,直到条件变量被触发(变量为ture)。在调用 pthread_cond_wait之前,应用程序必须加锁互斥量。pthread_cond_wait函数返回前,自动重新对互斥量加锁(如同执行了pthread_lock_mutex)。
(2)互斥量的解锁和在条件变量上挂起都是自动进行的。因此,在条件变量被触发前,如果所有的线程都要对互斥量加锁,这种机制可保证在线程加锁互斥量和进入等待条件变量期间,条件变量不被触发。条件变量要和互斥量相联结,以避免出现条件竞争——个线程预备等待一个条件变量,当它在真正进入等待之前,另一个线程恰好触发了该条件(条件满足信号有可能在测试条件和调用pthread_cond_wait函数(block)之间被发出,从而造成无限制的等待)。
(3)pthread_cond_timedwait 和 pthread_cond_wait 一样,自动解锁互斥量及等待条件变量,但它还限定了等待时间。如果在abstime指定的时间内cond未触发,互斥量mutex被重新加锁,且pthread_cond_timedwait返回错误 ETIMEDOUT。abstime 参数指定一个绝对时间,时间原点与 time 和 gettimeofday 相同:abstime = 0 表示 1970年1月1日00:00:00 GMT。
(4)pthread_cond_destroy 销毁一个条件变量,释放它拥有的资源。进入 pthread_cond_destroy 之前,必须没有在该条件变量上等待的线程。
(5)条件变量函数不是异步信号安全的,不应当在信号处理程序中进行调用。特别要注意,如果在信号处理程序中调用 pthread_cond_signal 或pthread_cond_boardcast 函数,可能导致调用线程死锁。
示例程序1
#include <stdio.h>
#include <pthread.h>
#include "stdlib.h"
#include "unistd.h"
pthread_mutex_t mutex
pthread_cond_t cond
void hander(void *arg)
{
free(arg)
(void)pthread_mutex_unlock(&mutex)
}
void *thread1(void *arg)
{
pthread_cleanup_push(hander, &mutex)
while(1)
{
printf("thread1 is running\n")
pthread_mutex_lock(&mutex)
pthread_cond_wait(&cond,&mutex)
printf("thread1 applied the condition\n")
pthread_mutex_unlock(&mutex)
sleep(4)
}
pthread_cleanup_pop(0)
}
void *thread2(void *arg)
{
while(1)
{
printf("thread2 is running\n")
pthread_mutex_lock(&mutex)
pthread_cond_wait(&cond,&mutex)
printf("thread2 applied the condition\n")
pthread_mutex_unlock(&mutex)
sleep(1)
}
}
int main()
{
pthread_t thid1,thid2
printf("condition variable study!\n")
pthread_mutex_init(&mutex,NULL)
pthread_cond_init(&cond,NULL)
pthread_create(&thid1,NULL,thread1,NULL)
pthread_create(&thid2,NULL,thread2,NULL)
sleep(1)
do
{
pthread_cond_signal(&cond)
}while(1)
sleep(20)
pthread_exit(0)
return 0
}
示例程序2:
#include <pthread.h>
#include <unistd.h>
#include "stdio.h"
#include "stdlib.h"
static pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER
static pthread_cond_t cond = PTHREAD_COND_INITIALIZER
struct node
{
int n_number
struct node *n_next
} *head = NULL
/*[thread_func]*/
static void cleanup_handler(void *arg)
{
printf("Cleanup handler of second thread./n")
free(arg)
(void)pthread_mutex_unlock(&mtx)
}
static void *thread_func(void *arg)
{
struct node *p = NULL
pthread_cleanup_push(cleanup_handler, p)
while (1)
{
//这个mutex主要是用来保证pthread_cond_wait的并发性
pthread_mutex_lock(&mtx)
while (head == NULL)
{
//这个while要特别说明一下,单个pthread_cond_wait功能很完善,为何
//这里要有一个while (head == NULL)呢?因为pthread_cond_wait里的线
//程可能会被意外唤醒,如果这个时候head != NULL,则不是我们想要的情况。
//这个时候,应该让线程继续进入pthread_cond_wait
// pthread_cond_wait会先解除之前的pthread_mutex_lock锁定的mtx,
//然后阻塞在等待对列里休眠,直到再次被唤醒(大多数情况下是等待的条件成立
//而被唤醒,唤醒后,该进程会先锁定先pthread_mutex_lock(&mtx),再读取资源
//用这个流程是比较清楚的/*block-->unlock-->wait() return-->lock*/
pthread_cond_wait(&cond, &mtx)
p = head
head = head->n_next
printf("Got %d from front of queue/n", p->n_number)
free(p)
}
pthread_mutex_unlock(&mtx)//临界区数据操作完毕,释放互斥锁
}
pthread_cleanup_pop(0)
return 0
}
int main(void)
{
pthread_t tid
int i
struct node *p
//子线程会一直等待资源,类似生产者和消费者,但是这里的消费者可以是多个消费者,而
//不仅仅支持普通的单个消费者,这个模型虽然简单,但是很强大
pthread_create(&tid, NULL, thread_func, NULL)
sleep(1)
for (i = 0i <10i++)
{
p = (struct node*)malloc(sizeof(struct node))
p->n_number = i
pthread_mutex_lock(&mtx)//需要操作head这个临界资源,先加锁,
p->n_next = head
head = p
pthread_cond_signal(&cond)
pthread_mutex_unlock(&mtx)//解锁
sleep(1)
}
printf("thread 1 wanna end the line.So cancel thread 2./n")
//关于pthread_cancel,有一点额外的说明,它是从外部终止子线程,子线程会在最近的取消点,退出
//线程,而在我们的代码里,最近的取消点肯定就是pthread_cond_wait()了。
pthread_cancel(tid)
pthread_join(tid, NULL)
printf("All done -- exiting/n")
return 0
}
3)信号量
如同进程一样,线程也可以通过信号量来实现通信,虽然是轻量级的。
信号量函数的名字都以"sem_"打头。线程使用的基本信号量函数有四个。
#include <semaphore.h>
int sem_init (sem_t *sem , int pshared, unsigned int value)
这是对由sem指定的信号量进行初始化,设置好它的共享选项(linux 只支持为0,即表示它是当前进程的局部信号量),然后给它一个初始值VALUE。
两个原子操作函数:
int sem_wait(sem_t *sem)
int sem_post(sem_t *sem)
这两个函数都要用一个由sem_init调用初始化的信号量对象的指针做参数。
sem_post:给信号量的值加1;
sem_wait:给信号量减1;对一个值为0的信号量调用sem_wait,这个函数将会等待直到有其它线程使它不再是0为止。
int sem_destroy(sem_t *sem)
这个函数的作用是再我们用完信号量后都它进行清理。归还自己占有的一切资源。
示例代码:
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <pthread.h>
#include <semaphore.h>
#include <errno.h>
#define return_if_fail(p) if((p) == 0){printf ("[%s]:func error!/n", __func__)return}
typedef struct _PrivInfo
{
sem_t s1
sem_t s2
time_t end_time
}PrivInfo
static void info_init (PrivInfo* thiz)
static void info_destroy (PrivInfo* thiz)
static void* pthread_func_1 (PrivInfo* thiz)
static void* pthread_func_2 (PrivInfo* thiz)
int main (int argc, char** argv)
{
pthread_t pt_1 = 0
pthread_t pt_2 = 0
int ret = 0
PrivInfo* thiz = NULL
thiz = (PrivInfo* )malloc (sizeof (PrivInfo))
if (thiz == NULL)
{
printf ("[%s]: Failed to malloc priv./n")
return -1
}
info_init (thiz)
ret = pthread_create (&pt_1, NULL, (void*)pthread_func_1, thiz)
if (ret != 0)
{
perror ("pthread_1_create:")
}
ret = pthread_create (&pt_2, NULL, (void*)pthread_func_2, thiz)
if (ret != 0)
{
perror ("pthread_2_create:")
}
pthread_join (pt_1, NULL)
pthread_join (pt_2, NULL)
info_destroy (thiz)
return 0
}
static void info_init (PrivInfo* thiz)
{
return_if_fail (thiz != NULL)
thiz->end_time = time(NULL) + 10
sem_init (&thiz->s1, 0, 1)
sem_init (&thiz->s2, 0, 0)
return
}
static void info_destroy (PrivInfo* thiz)
{
return_if_fail (thiz != NULL)
sem_destroy (&thiz->s1)
sem_destroy (&thiz->s2)
free (thiz)
thiz = NULL
return
}
static void* pthread_func_1 (PrivInfo* thiz)
{
return_if_fail (thiz != NULL)
while (time(NULL) <thiz->end_time)
{
sem_wait (&thiz->s2)
printf ("pthread1: pthread1 get the lock./n")
sem_post (&thiz->s1)
printf ("pthread1: pthread1 unlock/n")
sleep (1)
}
return
}
static void* pthread_func_2 (PrivInfo* thiz)
{
return_if_fail (thiz != NULL)
while (time (NULL) <thiz->end_time)
{
sem_wait (&thiz->s1)
printf ("pthread2: pthread2 get the unlock./n")
sem_post (&thiz->s2)
printf ("pthread2: pthread2 unlock./n")
sleep (1)
}
return
}
通 过执行结果后,可以看出,会先执行线程二的函数,然后再执行线程一的函数。它们两就实现了同步
/*编译命令:gcc -o shm shm.c -g */2
3#include<sys/sem.h>
4#include<sys/ipc.h>
5
6#define SEGSIZE 1024
7#define READTIME 1
8
9union semum
10{
11int val
12struct semid_ds *buf
13unsigned short *array
14}arg
15
16/* 创建信号量 */
17int sem_creat(key_t key)
18{
19union semun sem
20int semid
21sem.val = 0
22semid = semget(key, 1, IPC_CREAT | 0666)
23
24if (semid == -1)
25{
26printf("Create semaphore error\n")
27exit(-1)
28}
29
30semctl(semid, 0, SETVAL, sem)
31
32return semid
33}
34
35/* 删除信号量*/
36int del_sem(int semid)
37{
38union semun sem
39sem.val = 0
40semctl(semid, 0, IPC_RMID, sem)
41}
42
43/* 信号量的P操作,使得信号量的值加1 */
44int p(int semid)
45{
46struct sembuf sops = {0,
47 +1,
48 IPC_NOWAIT
49 }
50
51return (semop(semid, &sops, 1))
52}
53
54/* 信号量的v操作,使得信号量的值减1 */
55int v(int semid)
56{
57struct sembuf sops = {0,
58 -1,
59 IPC_NOWAIT
60 }
61
62return (semop(semid, &sops, 1))
63}
64
65/* server主程序 */
66int main(int argc, char **argv)
67{
68key_tkey
69int shmid, semid
70char *shm
71char msg[7] = "-data-"
72char i
73struct semid_ds buf
74
75key = ftok("/", 0)
76shmid = shmget(key, SEGSIZE, IPC_CREAT|0604)
77
78if shmid == -1)
79{
80printf(" create shared memory error\n")
81return -1
82}
83
84shm = (char *)shmat(shmid, 0, 0)
85if (-1 == (int)shm)
86{
87printf(" attach shared memory error\n")
88return -1
89}
90
91semid = sem_creat(key)
92
93for (i = 0i <= 3i++)
94{
95sleep(1)
96p(semid)
97sleep(READTIME)
98msg[5] = '0' + i
99memcpy(shm,msg,sizeof(msg))
100sleep(58)
101v(semid)
102}
103
104shmdt(shm)
105
106shmctl(shmid,IPC_RMID,&buf)
107
108del_sem(semid)
109
110return 0
111
112}
113
114
115
116
117
118
119
120
121
(1)Posix标准中有有名信号灯和无名信号灯之分,对于有名信号灯,可以用sem_open来创建,其prototype是:sem_t *sem_open(const char *name, int oflag)//打开已有的信号灯
sem_t *sem_open(const char *name, int oflag, mode_t mode, unsigned value)//一般是创建信号灯。
期中name是信号灯的名字, oflag是0, O_CREAT 或者 O_CREAT | O_EXCL, 如果指定O_CREAT, 那么mode和value对应创建该信号的模式和初始值。 如果指定了O_EXCL, 而且该信号灯已经在系统中存在,那调用会出错返回SEM_FAILED常量。 对于Linux内核来说,有名信号灯是很晚才加入内核中的,创建或是打开有名信号时候,应该指定”/semname“名字,对应的信号灯创建在/dev/shm目录下,名字是/dev/shm/sem.semname. BTW, 用gcc/g++编译实用信号灯功能的程序时候,应该引用librt库,(e.g., g++ -lrt sem.cpp). 关闭已打开的信号灯,用sem_close(sem_t *sem). 关闭信号灯并不意味着系统会删除它,要删除一个信号灯,需要调用sem_unlink(sem_t *sem)。 有名信号灯一般是为了进程之间同步实用的。 无名信号灯,一般是为一个进程内的不同线程之间同步使用的。 创建无名信号灯的方法如下:
sem_t sem
sem_init(&sem, int shared, unsigned int value)//初始化信号灯。
......
sem_destroy(&sem)//清除信号灯。
(2)信号灯的使用和状态。
信号灯一般用来描述不同线程所共享的公共资源的数量,每一个信号灯都有一个叫做信号量的非负整数与之相连;信号量一般代表公共资源的数目,比如空闲列表中的缓冲区数目,视频中读入帧的数目,等等。对于一个线程可以用sem_wait, sem_post函数来改变一个信号灯的信号量。
sem_wait(sem_t &sem)
sem_wait的语义如下:
{
while(信号量==0)
等待; //此处线程被挂起,等待其他线程调用sem_post唤醒之。
信号量减1;
}
注意:测试信号量是否为零,和减一的操作是原子的,也就是说期间不会发生线程切换。
与sem_wait对应的调用是sem_post,语义如下:
{
信号量加1;
唤醒等待该信号量的线程;//调用sem_wait并等待的线程。
}
该操作也是原子的。
信号灯的状态可以用sem_getvalue来查看。一般来说sem_wait和sem_post的调用不必在同一个线程内成对出现(象mutex那样,lock/unlock要配对出现)。 一般的情形是这样的,一个线程等待资源可用,调用sem_wait, 另外一个线程生成资源,然后调用sem_post,唤醒等待该资源的线程。因为信号灯所描述的是线程间公共资源,使用的时候一般和mutex一起使用,mutex保证访问公共资源的线程排他性,信号灯表示资源的可用性。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)