你好,请问SEM的放大倍数和分辨率是什么关系?谢谢

你好,请问SEM的放大倍数和分辨率是什么关系?谢谢,第1张

SEM仪器能区分清2个点之间的最小距离就是这台仪器的最高分辨率,分辨率越高,从图像上就可能可以看出更多细致的东西;

而放大倍数是指图像长度与真实观察长度的比值,片面的追求高放大倍数并没有什么实际的意义,因为它的最大放大倍数定义为:有效放大倍数=眼睛分辨率/电镜分辨率。

图像的清晰度是亮度对比度概念的综合,清晰的图像在肉眼可识别的微小尺度范围内,亮暗反差鲜明。扫描电镜加速电压高可以获得电子光学系统的高分辨能力,可高倍更清晰。

扩展资料:

所谓QVGA液晶技术,就是在液晶屏幕上输出的分辨率是240×320的液晶输出方式。这个分辨率其实和屏幕本身的大小并没有关系。比如说,若2.1英寸液晶显示屏幕可以显示240×320分辨率的图像,就叫做“QVGA 2.1英寸液晶显示屏”;

如果3.8英寸液晶显示屏幕可以显示240×320的图像,就叫做“QVGA 3.8英寸液晶显示屏”,以上两种情况虽然具有相同的分辨率,但是由于尺寸的不同实际的视觉效果也不同,一般来说屏幕小的一个画面自然也会细腻一些。

参考资料来源:百度百科-分辨率

什么是CMM?三坐标测量机(CMM)的发展概况及其基本组成2007-03-26 14:20三坐标测量机(Coordinate Measuring Machining,简称CMM)是20世纪60年代发展起来的一种新型高效的精密测量仪器。它的出现,一方面是由于自动机床、数控机床高效率加工以及越来越多复杂形状零件加工需要有快速可靠的测量设备与之配套;另一方面是由于电子技术、计算机技术、数字控制技术以及精密加工技术的发展为三坐标测量机的产生提供了技术基础。1960年,英国FERRANTI公司研制成功世界上第一台三坐标测量机,到20世纪60年代末,已有近十个国家的三十多家公司在生产CMM,不过这一时期的CMM尚处于初级阶段。进入20世纪80年代后,以ZEISS、LEITZ、DEA、LK、三丰、SIP、FERRANTI、MOORE等为代表的众多公司不断推出新产品,使得CMM的发展速度加快。现代CMM不仅能在计算机控制下完成各种复杂测量,而且可以通过与数控机床交换信息,实现对加工的控制,并且还可以根据测量数据,实现反求工程。目前,CMM已广泛用于机械制造业、汽车工业、电子工业、航空航天工业和国防工业等各部门,成为现代工业检测和质量控制不可缺少的万能测量设备。

图 三坐标测量机的组成

1—工作台 2—移动桥架 3—中央滑架 4—Z轴 5—测头 6—电子系统

现代精密测量技术现状及发展

现代精密测量技术是一门集光学、电子、传感器、图像、制造及计算机技术为一体的综合性交叉学科,涉及广泛的学科领域,它的发展需要众多相关学科的支持。在现代工业制造技术和科学研究中,测量仪器具有精密化、集成化、智能化的发展趋势。三坐标测量机(CMM)是适应上述发展趋势的典型代表,它几乎可以对生产中的所有三维复...

现代精密测量技术一门集光学、电子、传感器、图像、制造及计算机技术为一体的综合性交叉学科,涉及广泛的学科领域,它的发展需要众多相关学科的支持。在现代工业制造技术和科学研究中,测量仪器具有精密化、集成化、智能化的发展趋势。三坐标测量机(CMM)是适应上述发展趋势的典型代表,它几乎可以对生产中的所有三维复杂零件尺寸、形状和相互位置进行高准确度测量。发展高速坐标测量机是现代工业生产的要求。同时,作为下世纪的重点发展目标,各在微/纳米测量技术领域开展了广泛的应用研究。

1 坐标测量机的最新发展

三坐标测量机作为几何尺寸数字化检测设备在机械制造领域得到推广使用,而科学研究和机械制造行业的技术进步又对CMM提出更多新的要求,作为测量机的制造者就需要不断将新技术应用于自己的产品以满足生产实际的需要。

1.1 误差自补偿技术

德国Carl Zeiss公司最近开发的CNC小型坐标测量机采用热不灵敏陶瓷技术(Thermally insensitive ceramic technology),使坐标测量机的测量精度在17.8~25.6℃范围不受温度变化的影响。国内自行开发的数控测量机软件系统PMIS包括多项系统误差补偿、系统数识别和优化技术。

1.2 丰富的软件技术

Carl Zeiss公司开发的坐标测量机软件STRATA-UX,其测量数据可以从CMM直接传送到随机配备的统计软件中去,对测量系统给出的检验数据进行实时分析与管理,根据要求对其进行评估。依据此数据库,可自动生成各种统计报表,包括X-BAR&R及X_BAR&S图表、频率直方图、运行图、目标图等。美国Brown &Sharp公司的Chameleon CMM测量系统所配支持软件可提供包括齿轮、板材、凸轮及凸轮轴共计50多个测量模块。日本Mitutoyo公司研制开发了一种图形显示及绘图程序,用于辅助操作者进行实际值与要求测量值之间的比较,具有多种输出方式。

1.3 系统集成应用技术

各坐标测量机制造商独立开发的不同软件系统往往互不相容,也因知识产权的问题,些工程软件是封闭的。系统集成技术主要解决不同软件包之间的通信协议和软件翻译接口问题。利用系统集成技术可以把CAD、CAM及CAT以在线工作方式集成在一起,形成数学实物仿形制造系统,大大缩短了模具制造及产品仿制生产周期。

1.4 非接触测量

基于三角测量原理的非接触激光光学探头应用于CMM上代替接触式探头。通过探头的扫描可以准确获得表面粗糙度信息,进行表面轮廓的三维立体测量及用于模具特征线的识别。该方法克服了接触测量的局限性。将激光双三角测量法应用于1700mm×1200mm×200mm测量范围内,对复杂曲面轮廓进行测量,其精度可高于1μm。英国IMS公司生产的IMP型坐标测量机可以配用其他厂商提供的接触式或非接触式探头。

2 微/纳米级精密测量技术

科学技术向微小领域发展,由毫米级、微米级继而涉足到纳米级,即微/纳米技术。微/纳米技术研究和探测物质结构的功能尺寸与分辨能力达到微米至纳米级尺度,使类在改造自然方面深入到原子、分子级的纳米层次。

纳米级加工技术可分为加工精度和加工尺度两方面。加工精度由本世纪初的最高精度微米级发展到现有的几个纳米数量级。金刚石车床加工的超精密衍射光栅精度已达1nm,实验室已经可以制作10nm以下的线、柱、槽。

微/纳米技术的发展,离不开微米级和纳米级的测量技术与设备。具有微米及亚微米测量精度的几何量与表面形貌测量技术已经比较成熟,如HP5528双频激光干涉测量系统(精度10nm)、具有1nm精度的光学触针式轮廓扫描系统等。因为扫描隧道显微镜(STM,Scanning Tunning Microscope)、扫描探针显微镜(SPM,Scanning Probe Microscope)和原子力显微镜(AFM,Atomic Force Microscope)用来直接观测原子尺度结构的实现,使得进行原子级的操作、装配和改形等加工处理成为近几年来的前沿技术。

2.1 扫描探针显微镜

1981年美国IBM公司研制成功的扫描隧道显微镜(STM),把人们带到了微观世界。STM具有极高的空间分辨率(平行和垂直于表面的分辨率分别达到0.1nm和0.01nm,即可以分辨出单个原子),广泛应用于表面科学、材料科学和生命科学等研究领域,在一定程度上推动了纳米技术的产生和发展。与此同时,基于STM相似的原理与结构,相继产生了一系列利用探针与样品的不同相互作用来探测表面或界面纳米尺度上表现出来的性质的扫描探针显微镜(SPM),用来获取通过STM无法获取的有关表面结构和性质的各种信息,成为人类认识微观世界的有力工具。下面为几种具有代表性的扫描探针显微镜。

(1)原子力显微镜(AFM)

为了弥补STM只限于观测导体和半导体表面结构的缺陷,Binnig等人发明了AFM,AFM利用微探针在样品表面划过时带动高敏感性的微悬臂梁随表面的起伏而上下运动,通过光学方法或隧道电流检测出微悬臂梁的位移,实现探针尖端原子与表面原子间排斥力检测,从而得到表面形貌信息。就应用而言,STM主要用于自然科学研究,而相当数量的AFM已经用于工业技术领域。1988年中国科学院化学所研制成功国内首台具有原子分辨率的AFM。安装有微型光纤传导激光干涉三维测量系统,可自校准和进行绝对测量的计量型原子力显微镜可使目前纳米测量技术定量化。利用类似AFM的工作原理,检测被测表面特性对受迫振动力敏元件产生的影响,在探针与表面10~100nm距离范围,可以探测到样品表面存在的静电力、磁力、范德华力等作用力,相继开发磁力显微镜(MFM,Magnetic Force Microscope)、静电力显微镜(EFM,Electrostatic Force Microscope)、摩擦力显微镜(LFM,Lateral Force Microscope)等,统称为扫描力显微镜(SFM,Scanning Force Microscope)。

(2)光子扫描隧道显微镜(PSTM,Photon Scanning Tunning Microscope)

PSTM的原理和工作方式与STM相似,后者利用电子隧道效应,而前者利用光子隧道效应探测样品表面附近被全内反射所激起的瞬衰场,其强度随距界面的距离成函数关系,获得表面结构信息。

(3)其他显微镜

如扫描隧道电位仪(STP,Scanning Tunning Potentiometry)可用来探测纳米尺度的电位变化;扫描离子电导显微镜(SICM,Scanning Ion_Conductation Microscope)适用于进行生物学和电生理学研究;扫描热显微镜(Scanning Thermal Microscope)已经获得了血红细胞的表面结构;弹道电子发射显微镜(BEEM,Ballistic Electron Emission Miroscope)则是目前唯一能够在纳米尺度上无损检测表面和界面结构的先进分析仪器,国内也已研制成功。

2.2 纳米测量的扫描X射线干涉技术

以SPM为基础的观测技术只能给出纳米级分辨率,却不能给出表面结构准确的纳米尺寸,这是因为到目前为止缺少一种简便的纳米精度(0.10~0.01nm)尺寸测量的定标手段。美国NIST和德国PTB分别测得硅(220)晶体的晶面间距为192015.560±0.012fm和192015.902±0.019fm。日本NRLM在恒温下对220晶间距进行稳定性测试,发现其18天的变化不超过0.1fm。实验充分说明单晶硅的晶面间距具有较好的稳定性。扫描X射线干涉测量技术是微/纳米测量中的一项新技术,它正是利用单晶硅的晶面间距作为亚纳米精度的基本测量单位,加上X射线波比可见光波波长小两个数量级,有可能实现0.01nm的分辨率。该方法较其他方法对环境要求低,测量稳定性好,结构简单,是一种很有潜力的方便的纳米测量技术。自从1983年D.G.Chetwynd将其应用于微位移测量以来,英、日、意大利相继将其应用于纳米级位移传感器的校正。国内清华大学测试技术与仪器国家重点实验室在1997年5月利用自己研制的X射线干涉器件在国内首次清楚地观察到X射线干涉条纹。

软X射线显微镜、扫描光声显微镜等用以检测微结构表面形貌及内部结构的微缺陷。迈克尔逊型差拍干涉仪,适于超精细加工表面轮廓的测量,如抛光表面、精研表面等,测量表面轮廓高度变化最小可达0.5nm,横向(X,Y向)测量精度可达0.3~1.0μm。渥拉斯顿型差拍双频激光干涉仪在微观表面形貌测量中,其分辨率可达0.1nm数量级。

2.3 光学干涉显微镜测量技术

光学干涉显微镜测量技术,包括外差干涉测量技术、超短波长干涉测量技术、基于F-P(Febry-Perot)标准的测量技术等,随着新技术、新方法的利用亦具有纳米级测量精度。

外差干涉测量技术具有高的位相分辨率和空间分辨率,如光外差干涉轮廓仪具有0.1nm的分辨率;基于频率跟踪的F-P标准具测量技术具有极高的灵敏度和准确度,其精度可达0.001nm,但其测量范围受激光器的调频范围的限制,仅有0.1μm。而扫描电子显微镜(SEM,Scanning Electric Microscope)可使几十个原子大小的物体成像。

美国ZYGO公司开发的位移测量干涉仪系统,位移分辨率高于0.6nm,可在1.1m/s的高速下测量,适于纳米技术在半导体生产、数据存储硬盘和精密机械中的应用。

目前,在微/纳米机械中,精密测量技术一个重要研究对象是微结构的机械性能与力学性能、谐振频率、弹性模量、残余应力及疲劳强度等。微细结构的缺陷研究,如金属聚集物、微沉淀物、微裂纹等测试技术的纳米分析技术目前尚不成熟。国外在此领域主要开展用于晶体缺陷的激光扫描层析(Laser Scanning Tomograph)技术,用于研究样品顶部几个微米之内缺陷情况的纳米激光雷达技术(Nanoladar),其探测尺度分辨率均可达到1nm。

3 图像识别测量技术

随着近代科学技术的发展,几何尺寸与形位测量已从简单的一维、二维坐标或形体发展到复杂的三维物体测量,从宏观物体发展到微观领域。被测物体图像中即包含有丰富的信息,为此,正确地进行图像识别测量已经成为测量技术中的重要课题。图像识别测量过程包括:(1)图像信息的获取;(2)图像信息的加工处理,特征提取;(3)判断分类。计算机及相关计算技术完成信息的加工处理及判断分类,这些涉及到各种不同的识别模型及数理统计知识。

图像测量系统一般由以下结构组成,如图1所示。以机械系统为基础,线阵、面阵电荷耦合器件CCD或全息照相系统构成摄像系统;信息的转换由视频处理器件完成电荷信号到数字信号的转换;计算机及计算技术实现信息的处理和显示;反馈系统包括温度误差补偿,摄像系统的自动调焦等功能;载物工作台具有三坐标或多坐标自由度,可以精确控制微位移。

3.1 CCD传感器技术

物体三维轮廓测量方法中,有三坐标法、干涉法、莫尔等高线法及相位法等。而非接触电荷耦合器件CCD(Charge Coupled Device)是近年来发展很快的一种图像信息传感器。它具有自扫描、光电灵敏度高、几何尺寸精确及敏感单元尺寸小等优点。随着集成度的不断提高、结构改善及材料质量的提高,它已日益广泛地应用于工业非接触图像识别测量系统中。在对物体三维轮廓尺寸进行检测时,采用软件或硬件的方法,如解调法、多项式插值函数法及概率统计法等,测量系统分辨率可达微米级。也有将CCD应用于测量半导体材料表面应力的研究。

3.2 全息照相技术

全息照相测量技术是60年代发展起来的一种新技术,用此技术可以观察到被测物体的空间像。激光具有极好的空间相干性和时间相干性,通过光波的干涉把经物体反射或透射后,光束中的振幅与相位信息。

钙钛矿太阳能电池是目前光伏及材料研究领域的宠儿。从最开始的比拼光电转换效率,到优化材料配方和形貌,到对更深层次的机理研究,几乎每月都有Nature 或Science 出现,大家已经习以为常。研究的热度高,也代表着竞争激烈,有人戏称现在能想到的常规及非常规idea和套路几乎都被做完了。

那么是否还有机会发顶级文章呢?当然有,前提是脑洞够大、眼光够“毒”。

今天介绍的Nature文章,来自光伏领域的大佬——瑞士洛桑联邦理工学院(EPFL)Michael Grätzel教授的研究团队,他们研究了光照对金属卤化物钙钛矿薄膜形成的影响。这个切入点看似稀松平常,可以说该领域的研究者几乎人人都会遇到,但貌似只有他们注意到并进行了深入研究。

Amita Ummadisingu(本文一作,左)和Michael Grätzel教授(右)。图片来源:EPFL

在金属卤化物钙钛矿太阳能电池中,钙钛矿薄膜的质量会直接影响到器件的性能,优化钙钛矿薄膜的形貌显得非常重要。为了提高钙钛矿太阳能电池的性能,科学家们已经开发了许多器件结构及制备工艺,其中包括一步沉积法、顺序沉积法、反溶剂(anti-solvent)法。早期的研究已经发现制备钙钛矿的反应条件会对薄膜质量产生影响,比如反应物浓度以及反应温度。但是,科学家们对控制薄膜质量的精确反应机理以及主要因素的理解还称不上透彻。近日,Michael Grätzel教授研究团队以“光照”为切入点,利用共聚焦激光扫描荧光显微镜(CLSM)以及扫描电子显微镜(SEM)研究了两种常用的钙钛矿制备方法:顺序沉积法和反溶剂法,展示了光照对于钙钛矿生长速率以及薄膜形貌的影响,并对背后的机理进行了深入的研究。

工作介绍视频。视频来源:EPFL

首先,作者研究了光照对于顺序沉积法中钙钛矿形成的影响。在黑暗及光照条件下中,碘化铅(PbI2)沉积在介孔TiO2上,之后浸入甲基碘化铵(CH3NH3I,MAI)溶液中反应形成甲胺铅碘钙钛矿(CH3NH3PbI3)。在黑暗条件下,刚刚旋涂的PbI2薄膜没有展现出明显的结晶特点(图1a)。已有研究表明,结晶的金属卤化物与无定形组分相比,会展现出更强的发光。在浸入MAI溶液6秒后,就能看到明显的PbI2发光点(图1b,用绿色表示),结合SEM图像,可以证明已经形成了PbI2晶体。当浸渍时间增加到8秒时,他们在结晶PbI2簇的中央位置检测到了少量的钙钛矿(图1c,用红色表示),这表明在PbI2结晶之后MAI进入PbI2晶体开始反应生成钙钛矿。随后的结构识别发现了PbI2–钙钛矿混合晶体,这种之前并未见诸报道的现象也证明了PbI2结晶要早于钙钛矿形成。随着浸渍时间的延长,这种插入反应更加明显(图1d/1e)。而在1 Sun光照下,整个反应过程出现了两个明显的差异:光照下钙钛矿的形成更快,形成的晶体更小更多(图1f-1i)。作者还设计实验排除了伴随光照的加热效应对反应的影响,确认上述现象的诱因只有光照。

图1. 顺序沉积法,黑暗及1 Sun光照下制备甲胺铅碘钙钛矿的CLSM及SEM图像(内嵌)。图片来源:Nature

黑暗条件下,随着浸渍时间的延长,晶体的数量并没有随之增加(图1b-1d),这说明晶体成核在最初浸入MAI溶液的几秒内就已经完成,而且随后不会有新核产生。接下来,作者对不同光强下的成核进行了研究。浸渍25秒的样品,黑暗下、0.001 Sun、0.01 Sun、0.1 Sun以及1 Sun下的SEM图片(图2a)表明,尽管在黑暗条件下成核密度很低,但是一经光照,成核密度会呈指数型增加,证实了存在光诱导成核的现象。随后作者继续深入研究了光照影响PbI2膜成核过程的机理,在此不再赘述。

图2. 不同光照下的成核研究。图片来源:Nature

现在已经确定,顺序沉积法中进行光照能够让钙钛矿形成更快而且晶体更小更多,这对太阳能电池来说是好是坏呢?作者们在黑暗条件以及1 Sun条件下制备了光伏器件,黑暗条件下的器件平均光电转换效率(PCE)为5.9%,而1 Sun条件下的平均PCE为12.4%(最高可达13.7%),是黑暗条件下的两倍多。究其原因,可能是因为更小的晶体带来了更好、更均匀的表面覆盖,使得对入射光的吸收更佳,光电流密度更高。

研究完顺序沉积法,作者们继续研究另一种常用方法反溶剂法。该方法中,混合前体溶液(含金属和有机卤化物)被旋涂于基底上,随即滴加反溶剂(钙钛矿在该溶剂中不溶解)帮助钙钛矿形成,最后加热形成产品。有意思的是,光照在此种方法中起到的作用与在顺序沉积法中的正好相反,黑暗条件下用反溶剂法制备的CH3NH3PbI3太阳能电池平均PCE为16.9%(最高可达18.4%),高于1 Sun条件下的平均PCE 13.9%。作者们分析了原因,反溶剂法中,与黑暗条件相比光照下形成的钙钛矿晶体更小数量更多(图3),这与顺序沉积法类似。但是,由于黑暗与光照条件下反溶剂法制备的钙钛矿薄膜的表面覆盖都很好,而光照条件下形成的更多晶体在薄膜中引入了更多的晶界,这损害了太阳能电池的性能。

图3. 反溶剂法中黑暗及光照条件下的钙钛矿薄膜。图片来源:Nature

总而言之,作者通过实验证实黑暗条件对于反溶剂法制备钙钛矿薄膜是有利的,然而对于顺序沉积法来说情况相反,有利的条件变成了光照。这个结论看似简单但却非常重要,再结合对现象背后机理的深入研究,对于控制钙钛矿薄膜的形貌以及高质量钙钛矿太阳能电池的大规模生产都具有指导意义。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/223875.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-04-07
下一篇2023-04-07

发表评论

登录后才能评论

评论列表(0条)

    保存