线程间有共享数据。如果没有共享数据,用模型 3b 就行。虽然我们应该把线程间的共享数据降到最低,但不代表没有;
共享的数据是可以修改的,而不是静态的常量表。如果数据不能修改,那么可以在进程间用 shared memory,模式 3 就能胜任;
提供非均质的服务。即,事件的响应有优先级差异,我们可以用专门的线程来处理优先级高的事件。防止优先级反转;
latency 和 throughput 同样重要,不是逻辑简单的 IO bound 或 CPU bound 程序;
利用异步操作。比如 logging。无论往磁盘写 log file,还是往 log server 发送消息都不应该阻塞 critical path;
能 scale up。一个好的多线程程序应该能享受增加 CPU 数目带来的好处,目前主流是 8 核,很快就会用到 16 核的机器了。
具有可预测的性能。随着负载增加,性能缓慢下降,超过某个临界点之后急速下降。线程数目一般不随负载变化。
多线程能有效地划分责任与功能,让每个线程的逻辑比较简单,任务单一,便于编码。而不是把所有逻辑都塞到一个 event loop 里,就像 Win32 SDK 程序那样。
尽量使用缓存,包括用户缓存,信息缓存等,多花点内存来做缓存,可以大量减少与数据库的交互,提高性能。1、用jprofiler等工具找出性能瓶颈,减少额外的开销。优化数据库查询语句,减少直接使用hibernate等工具的直接生成语句(仅耗时较长的查询做优化)。优化数据库结构,多做索引,提高查询效率。
2、统计的功能尽量做缓存,或按每天一统计或定时统计相关报表,避免需要时进行统计的功能。
3、能使用静态页面的地方尽量使用,减少容器的解析(尽量将动态内容生成静态html来显示)。
4、解决以上问题后,使用服务器集群来解决单台的瓶颈问题。基本上以上述问题解决后,达到系统最优。
1、减少内存分配和释放
服务器在运行过程中,需要大量的内存容量来支撑,内存的分配和释放就尤为关键。用户在使用服务器的时候,可以通过改善数据结构以及算法制度来减少中间临时变量的内存分配和数据复制时间。
另外,可以选择使用共享内存模式来降低内存的分配和释放问题。共享内存在多处理器系统中,可以被不同的中央处理器访问,也可以有不同的进程共享,是一种非常快的进程通信方式。
2、使用持久链接
持久链接也被称为场链接,是通过TCP通信的一种方式。在一次TCP链接中持续发送多份数据而不断开连接。
从性能角度上来讲,建立TCP链接次数越少,越有利于性能的提升,尤其对于密集型图片或者网页等数据处理上来说有明显的加速作用。
3、改进I/O模型
I/O操作根据设备形式有不同的类型,例如我们常见的内存I/O,网络I/O,磁盘I/O。针对网络I/O和磁盘I/O, 它们的速度要慢很多,可以选择采用高带宽网络适配器可以提高网络I/O速度。
以上的I/O操作时需要CPU来调度的,这就需要CPU空出时间来等待I/O操作。如果在CPU调度上使用时间较少,也就能节约出CPU的处理时间,从这一点上来说也是提升高服务器并发处理能力的方式。
4、改进服务器并发数策略
服务器高并发策略的调整,是为了让I/O操作和CPU计算尽量重叠进行。一方面使CPU在I/O操作时等待时间内不要空闲,另一方面也是为了最大限度缩短等待时间。【感兴趣的话点击此处,了解一下】
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)