冰冻切片焦油紫染色法的实验原理

冰冻切片焦油紫染色法的实验原理,第1张

冰冻切片焦油紫染色法的实验方法原理:冰冻切片是指将组织在冷冻状态下直接用切片机切片。它实际上是以水为包埋剂,将组织进行冰冻至坚硬后切片的。在冰冻切片前组织不经过任何化学药品处理或加热过程,大大缩短了制片时间。同时,由于此法不需要经过脱水、透明和浸蜡等步骤,因而较适合于脂肪、神经组织和一些组织化学的制片,并作为快速切片的方法应用在临床诊断。

实验材料:新鲜组织

试剂、试剂盒:H2O2酒精丙酮PBSDAPI工作液中性树上

仪器、耗材:OCT速冻架恒冷箱切片机烘箱荧光显微镜

实验步骤:

一取材

应尽可能快地采取新鲜的材料,防止组织发生死后变化。

二速冻

1、将组织块平放于软塑瓶盖或特制小盒内(直径约2cm)。

2、如组织块小可适量加OCT包埋剂浸没组织,然后将特制小盒缓缓平放入盛有液氮的小杯内。

3、当盒底部接触液氮时即开始气化沸腾,此时小盒保持原位切勿浸入液氮中,大约10-20s组织即迅速冰结成块。

4、在制成冻块后,即可置入恒冷箱切片机冰冻切片。

5、若需要保存,应快速以铝箔或塑料薄膜封包,立即置入-80℃冰箱贮存备用。

三固定

1、样品托上涂一层OCT包埋胶,将速冻组织置于其上,4℃冰箱预冷5-10min让OCT胶浸透组织。

2、取下组织置于锡箔或者玻片上,样品托速冻。

3、组织置于样品托上,其上再添一层OCT胶,以完全覆盖为宜,速冻架(PE)上30min

四切片

1、恒温冰冻切片机为较理想的冰冻切片机,其基本结构是将切片机置于低温密闭室内,故切片时不受外界温度和环境影响,可连续切薄片至5-10μm。

2、切片时,低温室内温度以-15℃ ~ -20℃为宜,温度过低组织易破碎,抗卷板的位置及角度要适当,载玻片附贴组织切片,切勿上下移动。

3、切好室温放置30min后,入4℃丙酮固定5-10min,烘箱干燥20min。PBS洗5min×3。

4、进行抗原热修复,微波热修复也可,室温自然冷却。可用3%H2O2孵育5-10min,消除内源性过氧化物酶的活性。

五免疫荧光染色

1、冰冻切片室温晾干15min,可用含10%正常山羊血清的PBS室温封闭切片1小时(此步可不洗)。

2、滴加适当比例稀释的一抗或一抗工作液(抗体的量视组织大小而定,原则是可以均匀覆盖组织面,且保证整个过程中不会使组织干涸)。

3、将切片放在加了PBS的免疫组化湿盒,室温孵育2小时或4℃过夜。

4、第二天先将湿盒放到37℃回温1h,然后吸取片上的一抗进行回收,将切片插入到小染缸PBS冲洗。

5、滴加用PBS稀释好的二抗(避光)置于分子杂交箱中37℃孵育1小时。回收二抗,切片置于染缸内,PBS洗5min×3次。

6、滴加DAPI工作液染核,室温10-20min(工作浓度0.1%染色15min)。

7、回收DAPI,滴加5-10μl抗荧光衰减封片剂或中性树胶,用处理干净的盖玻片封片,即可到荧光显微镜或者共聚焦显微镜下观察拍照。

8、做好的切片放在切片盒内,置于4℃冰箱,可保存一周左右。

转自病理人才汇

冰冻切片丙酮固定原理是使细胞内的物质接近生活状态时的形态结构。根据查询相关公开信息显示,冰冻切片可以直接用丙酮固定,固定的原理是采用蛋白质凝固剂,使细胞内的物质尽量接近其生活状态时的形态结构、位置和除水以外的物质的过程。冰冻切片在手术台上取下的组织放到冷冻机里面负20度左右冻成硬块,制成切片用于快速诊断,该诊断仅作参考,应以石蜡诊断为主。

SEM、TEM、XRD、AES、STM、AFM的区别主要是名称不同、工作原理不同、作用不同、

一、名称不同

1、SEM,英文全称:Scanningelectronmicroscope,中文称:扫描电子显微镜。

2、TEM,英文全称:TransmissionElectronMicroscope,中文称:透射电子显微镜。

3、XRD,英文全称:Diffractionofx-rays,中文称:X射线衍射。

4、AES,英文全称:AugerElectronSpectroscopy,中文称:俄歇电子能谱。

5、STM,英文全称:ScanningTunnelingMicroscope,中文称:扫描隧道显微镜。

6、AFM,英文全称:AtomicForceMicroscope,中文称:原子力显微镜。

二、工作原理不同

1.扫描电子显微镜的原理是用高能电子束对样品进行扫描,产生各种各样的物理信息。通过接收、放大和显示这些信息,可以观察到试样的表面形貌。

2.透射电子显微镜的整体工作原理如下:电子枪发出的电子束经过冷凝器在透镜的光轴在真空通道,通过冷凝器,它将收敛到一个薄,明亮而均匀的光斑,辐照样品室的样品。通过样品的电子束携带着样品内部的结构信息。通过样品致密部分的电子数量较少,而通过稀疏部分的电子数量较多。

物镜会聚焦点和一次放大后,电子束进入第二中间透镜和第一、第二投影透镜进行综合放大成像。最后,将放大后的电子图像投影到观察室的荧光屏上。屏幕将电子图像转换成可视图像供用户观察。

3、x射线衍射(XRD)的基本原理:当一束单色X射线入射晶体,因为水晶是由原子规则排列成一个细胞,规则的原子之间的距离和入射X射线波长具有相同的数量级,因此通过不同的原子散射X射线相互干涉,更影响一些特殊方向的X射线衍射,衍射线的位置和强度的空间分布,晶体结构密切相关。

4.入射的电子束和材料的作用可以激发原子内部的电子形成空穴。从填充孔到内壳层的转变所释放的能量可能以x射线的形式释放出来,产生特征性的x射线,也可能激发原子核外的另一个电子成为自由电子,即俄歇电子。

5.扫描隧道显微镜的工作原理非常简单。一个小电荷被放在探头上,电流从探头流出,穿过材料,到达下表面。当探针通过单个原子时,通过探针的电流发生变化,这些变化被记录下来。

电流在流经一个原子时涨落,从而非常详细地描绘出它的轮廓。经过多次流动后,人们可以通过绘制电流的波动得到构成网格的单个原子的美丽图画。

6.原子力显微镜的工作原理:当原子间的距离减小到一定程度时,原子间作用力迅速增大。因此,样品表面的高度可以直接由微探针的力转换而来,从而获得样品表面形貌的信息。

三、不同的功能

1.扫描电子显微镜(SEM)是介于透射电子显微镜和光学显微镜之间的一种微观形貌观察方法,可以直接利用样品表面材料的材料性质进行微观成像。

扫描电子显微镜具有高倍放大功能,可连续调节20000~200000倍。它有一个大的景深,一个大的视野,一个立体的形象,它可以直接观察到各种样品在不均匀表面上的细微结构。

样品制备很简单。目前,所有的扫描电镜设备都配备了x射线能谱仪,可以同时观察微观组织和形貌,分析微区成分。因此,它是当今非常有用的科学研究工具。

2.透射电子显微镜在材料科学和生物学中有着广泛的应用。由于电子容易散射或被物体吸收,穿透率低,样品的密度和厚度会影响最终成像质量。必须制备超薄的薄片,通常为50~100nm。

所以当你用透射电子显微镜观察样品时,你必须把它处理得很薄。常用的方法有:超薄切片法、冷冻超薄切片法、冷冻蚀刻法、冷冻断裂法等。对于液体样品,通常挂在预处理过的铜线上观察。

3X射线衍射检测的重要手段的人们意识到自然,探索自然,尤其是在凝聚态物理、材料科学、生活、医疗、化工、地质、矿物学、环境科学、考古学、历史、和许多其他领域发挥了积极作用,不断拓展新领域、新方法层出不穷。

特别是随着同步辐射源和自由电子激光的兴起,x射线衍射的研究方法还在不断扩展,如超高速x射线衍射、软x射线显微术、x射线吸收结构、共振非弹性x射线衍射、同步x射线层析显微术等。这些新的X射线衍射检测技术必将为各个学科注入新的活力。

4,俄歇电子在固体也经历了频繁的非弹性散射,可以逃避只是表面的固体表面原子层的俄歇电子,电子的能量通常是10~500电子伏特,他们的平均自由程很短,约5~20,所以俄歇电子能谱学调查是固体表面。

俄歇电子能谱通常采用电子束作为辐射源,可以进行聚焦和扫描。因此,俄歇电子能谱可用于表面微观分析,并可直接从屏幕上获得俄歇元素图像。它是现代固体表面研究的有力工具,广泛应用于各种材料的分析,催化、吸附、腐蚀、磨损等方面的研究。

5.当STM工作时,探头将足够接近样品,以产生具有高度和空间限制的电子束。因此,STM具有很高的空间分辨率,可以用于成像工作中的科学观测。

STM在加工的过程中进行了表面上可以实时成像进行了表面形态,用于查找各种结构性缺陷和表面损伤,表面沉积和蚀刻方法建立或切断电线,如消除缺陷,达到修复的目的,也可以用STM图像检查结果是好还是坏。

6.原子力显微镜的出现无疑促进了纳米技术的发展。扫描探针显微镜,以原子力显微镜为代表,是一系列的显微镜,使用一个小探针来扫描样品的表面,以提供高倍放大。Afm扫描可以提供各类样品的表面状态信息。

与传统显微镜相比,原子力显微镜观察样品的表面的优势高倍镜下在大气条件下,并且可以用于几乎所有样品(与某些表面光洁度要求)并可以获得样品表面的三维形貌图像没有任何其他的样品制备。

扫描后的三维形貌图像可进行粗糙度计算、厚度、步长、方框图或粒度分析。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/226942.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-04-08
下一篇2023-04-08

发表评论

登录后才能评论

评论列表(0条)

    保存