陶瓷产品在烧成时遭受热应力破坏的原因有哪些?如何避免?

陶瓷产品在烧成时遭受热应力破坏的原因有哪些?如何避免?,第1张

现以自清洁陶瓷中卫生陶瓷的烧成为例,我们使用的是隧道窑快速烧成技术。隧道窑是一种气流作逆向水平流动的横焰式陶瓷加热设备,制品在隧道窑中要先后经过预热带、烧成带、急冷带、缓冷带及快冷带等过程(如图5)。为保证隧道窑各带中温度分布的均匀性,并使其烧成周期尽可能缩短,应首先在改进坯、釉料配方的基础上改进烧成方法,使窑炉断面呈低矮、扁平悬顶结构,优化卫生陶瓷产品的造型、结构设计,以便在快烧过程中保证产品质量。

图5 快烧隧道窑的结构和气流流动示意图

5.1 坯釉烧成过程中所发生的物理化学变化

坯釉的烧成是一个由量变到质变的复杂过程。在整个烧成过程中坯釉在窑内经受温度与气氛变化的同时,伴随着失重、收缩以及密度、颜色、强度、硬度等物理特性的变化,自身发生显著的质变化学变化。根据坯釉的烧成过程中所发生的物理化学变化特征,可以将烧成分为五个阶段,见表6。

表6 坯釉在烧成过程中的物理化学变化

阶段名称 温度范围 主要作用

物理变化 化学变化

低温阶段 室温~300℃ 排除机械水、吸附水,质量减轻,气孔率增加

氧化分解阶段 300~1000℃ (一)质量减轻

(二)气孔率增加

(三)硬度与机械强度增加 (一)氧化反应:

1.碳素及有机物氧化;2.硫化铁氧化

(二)分解反应:

1.结晶水分解排除;2.碳酸盐分解;3.硫酸盐分解;4.氢氧化铁分解

(三)晶型转变:

1.石英的晶型转变;

2.氧化铝的晶型转变

玻化成瓷阶段 1000℃ (一)强度增加

(二)气孔率降低,直到最小值

(三)体积收缩,相对密度增大

(四)色泽增白 (一)继续氧化、分解(主要是碳素和硫酸盐)

(二)固相熔融形成液相

(三)形成新的结晶——莫来石

(四)对在还原气氛下烧成的制品高价铁还原成低价铁,并形成低铁硅酸盐

高温保温阶段 保持烧成温度 (一)玻璃相进一步增多,莫来石晶体进一步发育成长

(二)晶体扩散,固相、液相分布更为均匀

冷却阶段 烧成温度~室温 (一)液相凝固

(二)白度、光泽度增加

(三)硬度、机械强度增加 石英晶型转变:

1.冷却至573℃时,α-石英→β-石英

2.冷却至270℃时,α-方石英→β-方石英

5.2 烧成制度

5.2.1 快烧隧道窑烧成带截面温度分布及其均衡

通常,由预热带向烧成带的转换温度为900~950℃ ,此后窑内的传热方式便既有对流传热又有辐射传热,在高温带窑内温差超过15℃时就有可能导致桔釉、针孔、釉泡及至变形等欠烧或过烧缺陷,故在烧成带更应采取必要的温度均衡借施。为了减少烧成带的温差,首先应确定适宜灼窑炉断面结构。为了使来自窑墙和窑顶火焰的热辐射作用得到相互补充,应在窑顶与被烧制品的上边缘之间选择上部烧嘴的最佳位置,并应通过改进烧嘴结构避免窑内局部温度过高。

5.2.2 快烧隧道窑急冷带截面温度分布及其均衡

从烧成温度到800℃,由于坯体内液相尚处于热塑性状态,故可实施快速冷却。这样既可防止坯体中因液相析晶、晶体长大而影响制品的机械性能又可防止制品因釉面析晶而失去光泽,同时还可满足快烧需要,缩短烧成周期[6]。但是,如果急冷速度过快会导致窑内局部温度过低、温差太大,可能引起处在窑内不同部位的制品或制品的不同部位结晶程度的差异,急冷过快还可能超过窑具所能承受的冷却应力极限,影响到窑具的使用寿命。为了防止急冷带温差过大可采取如下措施:

l)由于急冷带传热主要是对流传热,因此它具有与预热带相似的窑炉断面,而且在隧道窑的急冷带设置“屏障”有助于遏制来自高温烧成带的热辐射作用。

2)通过设置在制品上方和下方的多个喷孔向急冷带横向鼓人冷风或低温热风可达到预期急冷效果。但为避免窑内局部过冷,应注意喷孔的合理选位及其结构形状设计。

3)在窑体急冷带设置分散、可变的热风抽出系统可减少热风向烧成带的流动,并利于窑炉断面温度的分布。

5.2.3 快烧隧道窑缓冷带和终冷带截面温度分布及其均衡

当制品冷却到800℃以下时,坯体中液相已基本凝结为脆性固态而失去其热塑性,制品只能靠弹性抵抗热应力;尤其是卫生陶瓷制品,在冷却到573℃时还会发生石英的晶型转变并导致坯体体积发生急剧变化(体积收缩),会产生一定破坏应力,故在常规烧成中这一阶段宜采用缓冷工艺。但是,在卫生陶瓷快速烧成的冷却阶段,如果坯体中的温度分布愈均衡则愈有利于制品安全、快速地通过这一关键阶段。为缩短冷却时间并保证窑炉冷却带截面温度分布均衡,可采取如下几项措施:

l)在冷却带的起始阶段,为减少自然升力对热气流分布和截面温度均匀的影响,窑顶可设计为具有较小间隙的低矮、扁平悬顶结构。

2)在急冷后采用较缓慢、均匀的冷却(如图5中所示),它有利于石英晶型转变的顺利完成。

3)在冷却带中、后期增设上、下冷风鼓人和热风抽出装置(如图5中所示),这既有利于截面温度均匀又利于实现快速烧成。

5.2.4 快烧隧道窑对装窑方式、窑车台面结构及窑具的要求

关于料垛的码放,原则上应尽量减小料垛和窑顶、窑墙及窑车台面间所形成的外:履道与料垛中的内通道之比[7]。首先应省通过采用平吊顶以便减小顶部外通道,然后通过合理码放制品来减小顶部间隙,优化装窑密度并可采用“上密下疏”的码装方式,亦可采用混装方式并将热容较大的制品置于上部,由此使上、下温差减小。窑车台面结构应采用轻质或中空、耐热、保温材料制作,窑具宜采用轻质、薄壁、抗热震性能好、荷重软化温度高的耐火材料,窑具与产品质量比控制在2.0以内。

陶瓷材料是用天然或合成化合物经过成形和高温烧结制成的一类无机非金属材料。它具有高熔点、高硬度、高耐磨性、耐氧化等优点。可用作结构材料、刀具材料,由于陶瓷还具有某些特殊的性能,又可作为功能材料。

中文名

陶瓷材料

类别

无机非金属材料

特性

高熔点、高硬度、高耐磨性

目录

1性能

2原理

3分类

▪ 普通材料

▪ 特种材料

4历史发展

1性能编辑

力学特性

陶瓷材料是工程材料中刚度最好、硬度最高的材料,其硬度大多在1500HV以上。陶瓷的抗压强度较高,但抗拉强度较低,塑性和韧性很差。

热特性

陶瓷材料一般具有高的熔点(大多在2000℃以上),且在高温下具有极好的化学稳定性;陶瓷的导热性低于金属材料,陶瓷还是良好的隔热材料。同时陶瓷的线膨胀系数比金属低,当温度发生变化时,陶瓷具有良好的尺寸稳定性。

电特性

大多数陶瓷具有良好的电绝缘性,因此大量用于制作各种电压(1kV~110kV)的绝缘器件。铁电陶瓷(钛酸钡BaTiO3)具有较高的介电常数,可用于制作电容器,铁电陶瓷在外电场的作用下,还能改变形状,将电能转换为机械能(具有压电材料的特性),可用作扩音机、电唱机、超声波仪、声纳、医疗用声谱仪等。少数陶瓷还具有半导体的特性,可作整流器。

化学特性

陶瓷材料在高温下不易氧化,并对酸、碱、盐具有良好的抗腐蚀能力。

光学特性

陶瓷材料还有独特的光学性能,可用作固体激光器材料、光导纤维材料、光储存器等,透明陶瓷可用于高压钠灯管等。磁性陶瓷(铁氧体如:MgFe2O4、CuFe2O4、Fe3O4)在录音磁带、唱片、变压器铁芯、大型计算机记忆元件方面的应用有着广泛的前途。

2原理编辑

热辐射

热交换的基本途径为:传导、对流和辐射。为了有效散热,人们常通过减少热流途径的热阻和加强对流系数来实现,往往忽略了热辐射。LED灯具一般采用自然对流散热,散热器将LED产生的热量快速传递到散热器表面,由于对流系数较低,热量不能及时地散发到周围的空气中,导致表面温度升高,LED的工作环境恶化。提高辐射率可以有效地将散热器表面的热量通过热辐射的形式带走,一般铝制散热器通过阳极氧化来提高表面辐射率,陶瓷材料本身可以具有高辐射率特性,不必进行复杂的后续处理。

辐射机理

陶瓷材料的辐射机理是由随机性振动的非谐振效应的二声子和多声子产生。高辐射陶瓷材料如碳化硅、金属氧化物、硼化物等均存在极强的红外激活极性振动,这些极性振动由于具有极强的非谐效应,其双频和频区的吸收系数,一般具有100~100cm-1数量级,相当于中等强度吸收区在这个区域剩余反射带的较低反射率,因此,有利于形成一个较平坦的强辐射带。

一般来说,具有高热辐射效率的辐射带,大致是从强共振波长延伸到短波整个二声子组合和频区域,包括部分多声子组合区域,这是多数高辐射陶瓷材料辐射 带的共同特点,可以说,强辐射带主要源于该波段的二声子组合辐射。除少数例外,一般辐射陶瓷的辐射带集中在大于5m的二声子、三声子区。因此,对于红外辐 射陶瓷而言,1~5m波段的辐射主要来自于自由载流子的带内跃迁或电子从杂质能级到导带的直接跃迁,大于5m波段的辐射主要归于二声子组合辐射。

刘维良、骆素铭对常温陶瓷红外辐射做了研究,测试的陶瓷样品红外辐射率约0.82~0.94,对不同表面质量的远红外陶瓷釉面也进行了测试,辐射率约0.6~0.88,并从陶瓷断口SEM照片中得出远红外陶瓷粉在釉中添加量为10wt%时的辐射性能、釉面质量、颜色和成本较佳,其辐射率达到了 0.83,其他性能均达到国家日用瓷标准要求。崔万秋、吴春芸对低温远红外陶瓷块状样品进行了测试,红外辐射率为0.78~0.94。李红涛、刘建学研究发现,常温远红外陶瓷辐射率一般可达0.85,国外Enecoat釉涂料最高辐射率可达0.93~0.94。众多研究均表明,陶瓷材料或釉面本身具有很高的红外辐射率,是其替代传统铝制散热器的一大重要参数。[1]

3分类编辑

普通材料

采用天然原料如长石、粘土和石英等烧结而成,是典型的硅酸盐材料,主要组成元素是硅、铝、氧,这三种元素占地壳元素总量的90%,普通陶瓷来源丰富、成本低、工艺成熟。这类陶瓷按性能特征和用途又可分为日用陶瓷、建筑陶瓷、电绝缘陶瓷、化工陶瓷等。

特种材料

采用高纯度人工合成的原料,利用精密控制工艺成形烧结制成,一般具有某些特殊性能,以适应各种需要。根据其主要成分,有氧化物陶瓷、氮化物陶瓷、碳化物陶瓷、金属陶瓷等;特种陶瓷具有特殊的力学、光、声、电、磁、热等性能。本节主要介绍特种陶瓷。

楼上对玻璃和陶瓷的基本组成的论述是基本正确的,但说:陶瓷比玻璃耐腐蚀性强是完全错误的!首先,陶瓷与玻璃的种类都非常多,例如,玻璃有普通的硅酸盐玻璃,硼玻璃,还有石英玻璃,陶瓷也有硅酸盐的,但还有氧化铝陶瓷,氧化锆陶瓷,氧化铍陶瓷,碳化硅陶瓷,氮化硅陶瓷等等等等,这些陶瓷的耐腐蚀特性都差别很大,怎能一盖而论?其次,说耐腐蚀性一定要指名腐蚀介质和条件!否则无法比较,例如,石英玻璃在硫酸,硝酸中的耐腐蚀性比氧化铝,氧化锆陶瓷好得多,但在氢氧化钠中的耐腐蚀性又比氧化锆陶瓷差的多


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/232702.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-04-09
下一篇2023-04-09

发表评论

登录后才能评论

评论列表(0条)

    保存